参数优化 VMD 的滚动轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33+1

基金项目:

国家自然科学基金资助项目(51775243,11902124);山东省泰山产业领军人才计划资助项目;高等学校学科创新引智计划(111 计划)(B18027)


Rolling bearing fault diagnosis method based on parameter optimized VMD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于滚动轴承早期故障信号特征微弱,变分模态分解(Variational Mode Decomposition,VMD)的性能易受模态数和惩罚因子设置的影响,提出了一种自适应优化 VMD 参数的方法。基于中心频率判断本征模态函数(Band Limited Intrinsic Mode Functions,BIMF)是否混叠的思想提出中心频率混叠商算法,利用最小中心频率差与次小中心频率差的比值确定模态数。利用模糊熵原理,提出求和模糊熵算法优化惩罚因子。利用相关系数筛选模态分量,重构信号提取故障信息。通过对强噪声下外圈故障信号、内圈故障信号的分析,表明该方法能自适应确定模态数和惩罚因子,抑制模态混叠,能够从强噪声下有效地提取出故障信号特征,实现滚动轴承故障诊断。

    Abstract:

    The early fault signal characteristics of the rolling bearing are weak. The performance of traditional variational mode decomposition (VMD) depends on the parameters, which include mode number and penalty coefficient. To solve this problem, an adaptive method to determine parameters of VMD was proposed. The minimum center frequency quotient algorithm was proposed based on the idea of the center frequency to judge whether the bend limited intrinsic mode function (BIMF) is overlapped or not,and the mode number was determined by the ratio of the minimum frequency and the sub small frequency. By using the fuzzy entropy principle, the sum fuzzy entropy (SFE) was proposed to optimize the penalty coefficient. The correlation coefficient was used to select the BIMFs. The method can adaptively determine the mode number and penalty factor, suppress the mode aliasing phenomenon. it can extract the fault signal features from the strong noise to judge the bearing state.

    参考文献
    相似文献
    引证文献
引用本文

李 可,牛园园,宿 磊,顾杰斐,卢立新.参数优化 VMD 的滚动轴承故障诊断方法[J].振动工程学报,2023,36(1):280~287.[LI Ke, NIU Yuan-yuan, SU Lei, GU Jie-fei, LU Li-xin. Rolling bearing fault diagnosis method based on parameter optimized VMD[J]. Journal of Vibration Engineering,2023,36(1):280~287.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-16
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司