考虑小尺度效应的微圆轴扭转振动
DOI:
作者:
作者单位:

苏州大学 城市轨道交通学院,江苏

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省自然科学基金(编号:BK2010225);国家自然科学基金(11172192)


Twisting vibration of micro circular shafts accounting for small scale effects
Author:
Affiliation:

Soochow University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在微机电系统中,微纳米构件常常表现出尺度效应。基于非局部弹性理论,建立了微圆轴的扭转振动模型,并结合三种常见的边界条件,给出了具体的算例。结果表明:对比于经典连续力学,非局部弹性理论预言的圆轴扭转振动固有频率下降,并且微圆轴的外特征尺度即横截面半径越小,二者相差越大;振动频率的阶数越高,影响也越明显。随着截面半径的增加,振动频率下降并且非局部尺度效应逐渐消失。同时考察了扭转振动的模态函数和相对转角,发现前者与经典弹性理论结果一致。此外还讨论了材料内禀尺度的选取问题,以数值算例证明了内禀尺度与材料晶格常数非常接近,晶格常数可近似用作微纳米力学中材料的内禀尺度参数。

    Abstract:

    Micro/nano-components often exhibit size effects in micro-electro-mechanical systems. A twisting vibration model of micro circular shafts is established based on nonlocal elasticity theory in this paper. Concrete examples are presented for three kinds of boundary conditions. It is shown that nonlocal effects make natural frequency of the twisting vibration decrease in comparison with the results based on classical continuum mechanics, and the differences are much larger with a smaller external characteristic scale (radius of cross section of the circular shafts) or for higher mode frequency. Vibration frequency is lower and the nonlocal scale effects disappear with the increase of cross sectional radius. Vibration mode function and relative rotation are also observed, of which the former are consistent with those by classical continuum theory. A numerical example proves that lattice constant of material may be adopted as the internal characteristic scale in micro/nano-mechanics approximately.

    参考文献
    相似文献
    引证文献
引用本文

李成,朱忠奎.考虑小尺度效应的微圆轴扭转振动[J].振动工程学报,2012,25(3).[LI Cheng, ZHU Zhong-kui. Twisting vibration of micro circular shafts accounting for small scale effects[J]. Journal of Vibration Engineering,2012,25(3).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-08-08
  • 最后修改日期:2012-05-30
  • 录用日期:
  • 在线发布日期: 2012-06-12
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司