非负矩阵分解的发动机故障特征提取中的应用
DOI:
CSTR:
作者:
作者单位:

军械工程学院 七系,军械工程学院 七系,军械工程学院 科研部,军械工程学院 科研部,军械工程学院 导弹工程系

作者简介:

通讯作者:

中图分类号:

基金项目:

齿轮箱早期故障信号分析与智能识别的数学形态学方法 (编号51205405)


Feature Extraction for Engine Fault Diagnosis by Utilizing Adaptive Multi-scale Morphological Gradient and Non-negative Matrix Factorization
Author:
Affiliation:

Mechanical Engineering College,seventh department,The Seventh Department, Mechanical Engineering College,Mechanical Engineering College, Research and development section Department,Mechanical Engineering College, Research and development section Department,Mechanical Engineering College, Forth department

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信号处理与特征参数提取是发动机故障诊断的核心和关键。提出了采用自适应多尺度形态梯度算法对信号进行处理,综合利用小尺度下能保留信号细节和大尺度下抑制噪声能力强的优点,能够在强噪声背景下有效地提取振动信号中能够反映发动机工作状态的有用分量;在此基础上提出采用非负矩阵分解的特征提取方法对信号进行压缩,计算用于发动机故障诊断的特征参量。结果表明:与传统的信号处理与特征参量提取方法相比,本文提出的方法能够具有更高的分类精度,为准确判断发动机故障状态提供了一种行之有效的新方法。

    Abstract:

    Signal processing and feature extraction are key steps for engine fault diagnosis. An adaptive multi-scale morphological gradient (AMMG) algorithm, which can keep the detail of the signal with small scale structure elements and depress noise with large scale structure elements, was employed to extract the useful signal components hiding in the original signal with strong noise. Furthermore, the non-negative matrix factorization technology was utilized to calculate the features of the signal processed by AMMG for engine fault diagnosis. The application results in practical engine fault diagnosis have demonstrated the superiority of the proposed feature extraction scheme over the traditional signal processing and feature extraction methods.

    参考文献
    相似文献
    引证文献
引用本文

张培林,王怀光,张磊,王卫国,李兵.非负矩阵分解的发动机故障特征提取中的应用[J].振动工程学报,2013,26(6).[张培林,王怀光,张磊,王卫国,李兵. Feature Extraction for Engine Fault Diagnosis by Utilizing Adaptive Multi-scale Morphological Gradient and Non-negative Matrix Factorization[J]. Journal of Vibration Engineering,2013,26(6).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-02-03
  • 最后修改日期:2013-12-03
  • 录用日期:2013-08-19
  • 在线发布日期: 2014-05-07
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司