基于非平稳循环特征极坐标增强的曲轴轴承磨损故障诊断
DOI:
CSTR:
作者:
作者单位:

天津军事交通学院汽车工程系 天津 233011,天津军事交通学院汽车工程系 天津 233011,天津军事交通学院汽车工程系 天津 233011,天津军事交通学院汽车工程系 天津 233011

作者简介:

通讯作者:

中图分类号:

基金项目:

总后勤部重点项目 (项目编号:AS407C001)


Crankshaft Bearing Wear Fault Diagnosis Based On the Non-stationary Cycle Feature Enhancement
Author:
Affiliation:

Department of Automobile Engineering,College of Military Transportation,Tianjin,Department of Automobile Engineering,College of Military Transportation,Tianjin,Department of Automobile Engineering,College of Military Transportation,Tianjin,Department of Automobile Engineering,College of Military Transportation,Tianjin

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    曲轴轴承早期磨损故障特征微弱且呈现非平稳循环特征,提出一种非平稳循环特征极坐标增强方法。利用连续小波变换对发动机振动信号进行处理,然后根据发动机工作过程与配气相位的关系对于每一工作循环数据进行等角度采样,将信号特征由直角坐标系映射到极坐标系并进行同步增强,并利用模糊C均值聚类对故障特征参数进行分类识别。仿真信号的分析对比显示了该方法能够削弱噪声干扰,突出信号特征。运用此方法对某型发动机曲轴轴承磨损信号进行分析,有效地提取了曲轴轴承磨损特征信息,准确识别了曲轴轴承不同磨损故障。

    Abstract:

    Crankshaft bearing early wear fault feature is weak and non-stationary time-varying. A polar coordinate enhancement method of the non-stationary cycling feature is proposed. Using the continuous wavelet transform to achieve signal time- frequency representation for the engine vibration signals, and then each work cycle data is re-sampled according to engine working process with gas-phase relationship, signal feature in the time-frequency is mapped to the polar coordinate and is synchronously enhanced. Finally, feature parameters are classified by the fuzzy C-means clustering. Simulated signal is used to testify the effectiveness of this method. The results show that the method can weaken the noise disturbance and strengthen the signal feature. Using this method to diagnose crankshaft bearing early wear fault for a certain type engine, effectively extract the crankshaft bearing fault feature information and accurately identify different crankshaft bearing wear faults.

    参考文献
    相似文献
    引证文献
引用本文

贾继德,张玲玲,梅检民,肖云魁.基于非平稳循环特征极坐标增强的曲轴轴承磨损故障诊断[J].振动工程学报,2013,26(6).[Jia Ji-de,,梅检民 and. Crankshaft Bearing Wear Fault Diagnosis Based On the Non-stationary Cycle Feature Enhancement[J]. Journal of Vibration Engineering,2013,26(6).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-09-02
  • 最后修改日期:2013-12-04
  • 录用日期:2013-11-07
  • 在线发布日期: 2014-05-07
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司