基于流形学习和改进VPMCD的滚动轴承故障诊断方法*
DOI:
CSTR:
作者:
作者单位:

湖南大学汽车车身先进设计制造国家重点实验室,湖南大学汽车车身先进设计制造国家重点实验室,湖南大学汽车车身先进设计制造国家重点实验室,湖南大学汽车车身先进设计制造国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


The rolling bearings fault diagnosis method based onManifold learning and improved VPMCD
Author:
Affiliation:

State key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,Changsha,410082,State key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,Changsha,410082,State key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,Changsha,410082,State key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,Changsha,410082

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local characteristic scale decomposition,简称LCD),并提取各内禀尺度分量(Intrinsic scale component,简称ISC)的特征构造高维特征向量,接着采用LE算法挖掘出高维数据中包含有效信息且具有内在规律性的低维特征,然后输入到基于Kriging的改进多变量预测模型(Kriging-Variable predictive model based class discriminate,简称KVPMCD)分类器中进行模式识别。该方法充分利用并有效结合了LCD在信号处理、LE在挖掘特征信息和KVPMCD在模式识别方面的优势,实现了滚动轴承故障特征提取到故障识别的全程诊断。实验分析结果表明,基于LE算法和KVPMCD的分类方法可以有效地对滚动轴承的工作状态和故障类型进行识别。

    Abstract:

    a new method of rolling bearings fault diagnosis is proposed based on Laplacian Eigenmaps Manifold learning and improved Variable predictive model based class discriminate(VPMCD), firstly, the vibration signals are decomposed using Local characteristic scale decomposition (LCD),and extracting the feature of each Intrinsic scale component (ISC) to construct the high-dimensional eigenvectors; then using IE algorithm to dig low-dimensional eigenvectors that contain valid information and have intrinsic regularity in high dimensional data; finally, the low-dimensional eigenvectors are inputted Kriging-Variable predictive model based class discriminate(KVPMCD) classifier for pattern recognition. This method makes full use and effective combination of the advantages of LCD in the signal processing, LE in mining feature information, KVPMCD in pattern recognition, and realizes the entire diagnosis from rolling bearings fault feature extraction to fault identification. Experimental results show that the KVPMCD model based on the LE algorithm can effectively identify work status and fault type of rolling bearing.

    参考文献
    相似文献
    引证文献
引用本文

潘海洋,杨宇,李永国,程军圣.基于流形学习和改进VPMCD的滚动轴承故障诊断方法*[J].振动工程学报,2014,27(6).[Pan Haiyang, Yang Yu, and. The rolling bearings fault diagnosis method based onManifold learning and improved VPMCD[J]. Journal of Vibration Engineering,2014,27(6).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-29
  • 最后修改日期:2014-11-25
  • 录用日期:2014-02-27
  • 在线发布日期: 2015-01-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司