最大相关峭度解卷积结合稀疏编码收缩的齿轮微弱故障特征提取
DOI:
CSTR:
作者:
作者单位:

华北电力大学能源动力与机械工程学院,华北电力大学能源动力与机械工程学院

作者简介:

通讯作者:

中图分类号:

TH133.3;TH17

基金项目:

河北省自然科学基金资助(E2014502052);中央高校基本科研业务费专项资金资助(2015XS120)


Weak feature extraction of gear fault based on maximum correlated kurtosisdeconvolution and sparse code shrinkage
Author:
Affiliation:

School of Energy,Power and Mechanical Engineering,North China Electric Power University,School of Energy,Power and Mechanical Engineering,North China Electric Power University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对强背景噪声环境下齿轮早期故障诊断问题,提出了最大相关峭度解卷积结合稀疏编码收缩的微弱故障特征提取方法。由于最大相关峭度解卷积算法的处理结果同时受滤波器长度参数及解卷积周期参数的影响,为自适应地实现最佳的解卷积效果,利用粒子群算法优良的寻优特性,对最大相关峭度解卷积算法的最佳影响参数组合进行搜索。原故障信号经影响参数优化的最大相关峭度解卷积算法处理后,冲击特征会明显增强,为剔除剩余噪声,对所获解卷积信号做进一步稀疏编码收缩降噪处理,并通过分析降噪信号的包络谱来识别故障特征频率成分。实例分析结果验证了该方法的有效性和可靠性。

    Abstract:

    Aiming at incipient fault diagnosis problem of gear under strong background noise, an feature extraction method for weak fault based on maximum correlated kurtosis deconvolution and sparse code shrinkage was proposed. As the processing result of maximum correlated kurtosis deconvolution algorithm was affected by filter length parameter and deconvolution period parameter, in order to achieve the best deconvolution result adaptively, particle swarm optimization algorithm with excellent optimization characteristic was used to search for the optimal combination of influencing parameters of maximum correlated kurtosis deconvolution algorithm. The impact characteristic of original fault signal could be enhanced after processed by maximum correlated kurtosis deconvolution algorithm with optimized parameters, in order to eliminate the residual noise, the deconvolution signal was further processed by sparse code shrinkage de-noising algorithm, then fault characteristic frequency components could be identified by analyzing the envelope spectrum of de-noising signal. The analysis results verified the effectiveness and reliability of this method.

    参考文献
    相似文献
    引证文献
引用本文

唐贵基,王晓龙.最大相关峭度解卷积结合稀疏编码收缩的齿轮微弱故障特征提取[J].振动工程学报,2015,28(3).[TANG Gui-ji, WANG Xiao-long. Weak feature extraction of gear fault based on maximum correlated kurtosisdeconvolution and sparse code shrinkage[J]. Journal of Vibration Engineering,2015,28(3).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-29
  • 最后修改日期:2015-05-29
  • 录用日期:2014-09-23
  • 在线发布日期: 2015-09-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司