扇形板面内振动的解析解法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨工程大学;2.哈尔滨船舶锅炉涡轮机研究所(中国船舶重工集团公司第七0三研究所)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51805106);船用低速机工程一期


Analytical Solutions for In-plane Vibration of Circular Sector Plates
Author:
Affiliation:

1.Harbin Engineering University;2.Harbin Marine Boiler &3.Turbine Research Institute

Fund Project:

The National Natural Science Foundation of China (Grant No. 51805106); the Marine Low-Speed Engine Project-Phase I

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用亥姆霍兹分解和分离变量法推导了扇形板面内振动特性分析的解析解。利用两个直边上的边界条件,建立圆周方向上的本征值问题,同时证明仅当两个直边为简支约束时,圆周方向上才存在相容的本征值条件。借助分量变量法获得扇形板面内振动问题的位移和应力函数解析表达式,并根据圆周曲边边界条件,建立用于确定固有频率和模态振型的特征方程。通过不同边界条件和扇形角组合下的算例分析,验证了本文建立的解析解法的适用性和精确性。参数影响分析表明,所研究各种边界条件下,扇形板的前五阶固有频率随扇形角的增大在局部范围内保持不变或单调减小。

    Abstract:

    To investigate the free in-plane vibration of circular sector plates, analytical solutions are derived based on Helmholtz decomposition and the method of separation of variables. Eigenvalue problems in the circumferential direction are derived by applying the boundary conditions on both radial edges. Meanwhile, it is proved that compatible eigenvalue conditions can be only obtained when both radial edges are simply supported. The analytical solutions of displacements and stresses are derived by invoking the method of separation of variables. Subsequently, the corresponding characteristic equations for finding natural frequencies and mode shapes are derived using the boundary conditions at outer radius. Extensive results of circular sector plates with different boundary conditions and various sector angles are presented to demonstrate the proposed method. The results indicate that the proposed method has great accuracy and applicability. Parameter study shows that the first fifth natural frequencies keep constant in some region and decrease monotonically in other region as the sector angle increasing.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-07
  • 最后修改日期:2020-03-31
  • 录用日期:2020-04-28
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司