强背景噪声振动信号中滚动轴承故障冲击特征提取
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33;TN911.7

基金项目:

国家自然科学基金资助项目(51875216);广东省自然科学基金资助项目(2019A1515011780)


The impact features extraction of rolling bearing under strong background noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机械早期故障引起的冲击特征微弱,易受强背景信号和噪声的干扰而难以提取的问题,提出一种奇异值分解(Singular Value Decomposition,SVD)差分谱与S 变换相结合的微弱冲击特征提取方法。将原始信号构造成Hankel 矩阵,采用SVD 对重构矩阵进行分解;利用奇异值差分谱确定降噪阶次进行降噪;采用S 变换对降噪后的信号进行时频分析,提取信号中的微弱冲击特征信息。通过数值仿真和实际轴承故障数据的对比,表明该方法可有效辨别轴承振动信号中故障引起的早期微弱冲击特征,为轴承故障诊断提供先验信息。

    Abstract:

    Aiming at the problem that the impact of early mechanical failure is weak and it is difficult to extract due to strong background signal and noise interference,a weak impact feature extraction method combining singular value decomposition(SVD)differential spectrum and S?transform is proposed. The original signal is constructed into a Hankel matrix,and the reconstruction matrix is decomposed by SVD. The noise reduction order is determined by singular value difference spectrum for noise reduction. The S-transformation is used to analyze the time-frequency of the denoised signal,the weak impact characteristic information of the signal is extracted. The comparison between numerical simulation and actual bearing fault data shows that the method can effectively distinguish the early weak shock characteristics caused by faults in the bearing vibration signal. It can provide a priori information for the bearing fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

刘湘楠,赵学智,上官文斌.强背景噪声振动信号中滚动轴承故障冲击特征提取[J].振动工程学报,2021,34(1):202~210.[LIU Xiang?nan, ZHAO Xue?zhi, SHANGGUAN Wen?bin. The impact features extraction of rolling bearing under strong background noise[J]. Journal of Vibration Engineering,2021,34(1):202~210.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-12
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司