数据领域选择与空间迁移在齿轮箱故障诊断中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH132.41

基金项目:

国家自然科学基金资助项目(51575102);东南大学优秀博士学位论文培育基金资助项目(YBPY1887)


Application of data domain selection and space transfer on gearbox fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种空间迁移新思路,以提升齿轮箱故障诊断性能,其由辅助振动数据构成源领域、目标振动数据构成目标领域,迁移学习(Transfer learning,TL)将前者分类模型应用至后者,以克服短时间内目标振动数据不足的问题。根据频带选择独立成分分析(Band selective independent component analysis,BS?ICA)规则选择迁移模型的数据领域,并提取其时域特征构成五维空间。利用均衡密度投影(Equilibrium density projection,MDP)将源领域和目标领域同时映射至二维投影空间,并最小化领域均值差异以拉近两者在低维空间内的距离。在投影空间内,利用逻辑回归(Logistic regression,LR)和支持向量机(Support vector machine,SVM)基分类器对映射样本实施分类。同时通过剔除低质量源领域样本,加入新采集样本以维持模型更新。利用 Spectra Quest 齿轮传动系统,对比迁移成分分析(Transfer composition analysis,TCA)、领域适应机(Domain selection machine,DSM)等传统 TL 模型,所提方法不但能提高工况快速变化时的诊断精度,同时能加快诊断速度,具有实际的工程应用价值。

    Abstract:

    To improve the performance of gearbox fault diagnosis,a space transfer strategy is proposed. Here the source domains are composed by multiple auxiliary channels and the target domain is composed by single target channel. With transfer learning(TL),the fault diagnosis models in the former can be applied in the latter to overcome the problem of lacking target data. Firstly,the domains are selected according to the band selective independent component analysis(BS-ICA)rule and the original five-dimension spaces are constructed by extracting their time-domain features. Secondly,the source and target domains are mapped to a public two-dimensional space using the equilibrium density projection(EDP). Meanwhile,the minimum mean difference strategy is used to minimize the difference between two projection spaces. Finally,the logistic regression(LR)and support vector machine(SVM)classifiers are both carried out for sample classification. Also,the diagnostic model can be updated by removing low-quality samples while adding high-quality samples in source domains. Based on the Spectra Quest’s gear drive system,the performance between proposed method and classical transfer strategies including transfer composition analysis(TCA)and domain selection machine(DSM)are compared,which indicates that the former has higher diagnostic accuracy as well as faster running speed when facing with rapid change of working conditions,thus possessing high value in application of engineering.

    参考文献
    相似文献
    引证文献
引用本文

沈 飞,陈 超,徐佳文,严如强.数据领域选择与空间迁移在齿轮箱故障诊断中的应用[J].振动工程学报,2021,34(2):379~388.[SHEN Fei, CHEN Chao, XU Jia-wen, YAN Ru-qiang. Application of data domain selection and space transfer on gearbox fault diagnosis[J]. Journal of Vibration Engineering,2021,34(2):379~388.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-21
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司