Bi⁃LSTM 神经网络用于轴承剩余使用寿命预测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33;TN911.7

基金项目:

陕西省自然科学基础研究计划项目(2021M-169);中央高校基本科研业务费(300102259203);装备预研教育部联合基金资助项目(6141A02033111)


Bi⁃LSTM neural network for remaining useful life prediction of bearings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效获得轴承退化过程,设计一种改进损失函数的卷积自编码器(Convolutional Autoencode),使其可从多传感器采集的振动信号中提取轴承健康状态,避免了局部信息的丢失,同时得到了更深层次的故障特征。提出了一种基于双向长短时记忆网络(Bi?directional LSTM)的循环神经网络结构,利用其对时间序列数据的处理能力,学习轴承在实际工作过程中的退化规律,实现对轴承的剩余使用寿命预测。此外,为进一步提升模型的预测准确率及泛化能力,设计接收随机长度样本的 Bi?LSTM 网络进行训练,使得模型接收连续数据而不是分段的数据。最后,使用NASA 的 IMS 数据集进行了验证和对比试验,得出本文所构建的 CE?Bi?LSTM 轴承健康预测模型相较于其他方法具有更准确的预测能力。

    Abstract:

    Rolling bearing is a key part of rotating machine and its healthy condition is of significance on safety in production. The prediction for operating condition and residual lifetime of the rolling bearing is one of main challenges in intelligent diagnosis field.In order to attain the whole process of rolling bearing degradation,a method of Convolution Autoencode with improved loss function is proposed in this paper. The proposed method can obtain the condition of rolling bearing from vibration signals collected by multi-sensors avoiding the loss of local information as well as achieving fault character in deeper layer. Then a cyclic neural network structure based on bi-directional long and short time memory(Bi?LSTM)is suggested in this paper to learn the principle of rolling bearing degradation in practical work by means of its ability to process the time series data,which realizes the residual lifetime prediction of the rolling bearing. In addition,with the aim of improving the prediction accuracy and ability to be used widely of model,the Bi?LSTM network is trained by receiving the sample with random length to make the model accept continuous data instead of segmented data. Finally,the IMS data set from NASA is utilized to operate experiment and comparative test. The result shows that the proposed prediction model of rolling bearing lifetime based on CE-Bi ? LSTM exhibits higher precision than that of other methods.

    参考文献
    相似文献
    引证文献
引用本文

申彦斌,张小丽,夏 勇,杨 吉,陈双达. Bi⁃LSTM 神经网络用于轴承剩余使用寿命预测研究[J].振动工程学报,2021,34(2):402~410.[SHEN Yan-bin, ZHANG Xiao-li, XIA Yong, YANG Ji, CHEN Shuang-da. Bi⁃LSTM neural network for remaining useful life prediction of bearings[J]. Journal of Vibration Engineering,2021,34(2):402~410.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-21
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司