基于局部质心均值最小距离鉴别投影的旋转机械故障数据降维分析研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH 165+3;TN911.7

基金项目:

国家自然科学基金资助项目(51675253);兰州理工大学红柳一流学科建设项目


Dimensional reduction analysis of rotating machinery fault data based on local centroid mean minimum-distance discriminant projection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对旋转机械故障特征集非线性强、维数过高导致分类困难的问题,提出一种基于局部质心均值最小距离鉴别投影(Local Centroid Mean Minimum?distance Discriminant Projection,LCMMDP)的故障数据集降维算法。该算法在考虑样本的内聚性和分离性的同时,能够保持样本局部几何结构信息,反映样本与局部质心均值之间的近邻关系。从多个角度提取机械振动信号的混合特征,构建原始高维特征集,通过 LCMMDP 提取出低维敏感特征子集,利用改进的基于局部均值与类均值的 k?近质心近邻分类算法(k?nearest Centroid Neighbor Classification Based on Local Mean and Class Mean,KNCNCM)进行故障模式识别。所提方法集成了 LCMMDP 在维数约简和 KNCNCM在模式识别的优势,可得到较高的故障识别准确率。分别使用一个双转子系统数据集和仿真数据集验证了该方法的有效性。

    Abstract:

    Aiming at the problem of classification difficulty caused by the strong nonlinearity and the high dimensionality of fault dataset of rotating machinery,a fault dataset dimension reduction algorithm local centroid mean minimum-distance discriminant projection(LCMMDP)is proposed. The algorithm can maintain the local geometric structure information of the sample while considering the cohesion and separation of the sample,reflecting the close relationship between the sample and the local centroid mean.The hybrid characteristics of rotor vibration signals are extracted from multiple angles,the original high-dimensional feature sets are constructed,and low-dimensional sensitive feature subsets are extracted by LCMMDP. The improved k-nearest centroid neighbor classification based on local mean and class mean is used(KNCNCM)for fault pattern recognition. The proposed method integrates the advantages of LCMMDP in dimension reduction and KNCNCM in pattern recognition and provides higher fault identification accuracy. The validity of the proposed method is verified by the instance of the fault diagnosis of a double-span rotor system dataset and simulation dataset.

    参考文献
    相似文献
    引证文献
引用本文

石明宽,赵荣珍.基于局部质心均值最小距离鉴别投影的旋转机械故障数据降维分析研究[J].振动工程学报,2021,34(2):411~420.[SHI Ming-kuan, ZHAO Rong-zhen. Dimensional reduction analysis of rotating machinery fault data based on local centroid mean minimum-distance discriminant projection[J]. Journal of Vibration Engineering,2021,34(2):411~420.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-21
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司