利用参数自适应多点最优最小熵反褶积的行星轮轴承微弱故障特征提取
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33

基金项目:

辽宁省科技重大专项计划资助项目(2019JH1/10100019);大连理工大学基本科研业务费(DUT20LAB125)


Weak fault feature extraction of planetary bearing based on parameter adaptive MOMEDA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adjusted,PA-MOMEDA)的行星轮轴承微弱故障诊断方法。为克服MOMEDA依赖人为经验选取主要影响参数的不足,建立多目标优化新指标,通过粒子群算法优良的寻优特性来自动确定最佳的影响参数,使用参数优化的MOMEDA对行星轮轴承故障信号进行最佳解卷积运算。针对MOMEDA解卷积信号存在严重边缘效应的问题,设计一种波形延伸策略对解卷积信号进行自适应补偿,提高了MOMEDA对微弱故障冲击特征的解卷积性能。对提升的解卷积信号进行包络解调处理,即可从其包络谱中提取到明显的故障特征频率。通过行星轮轴承故障仿真和工程实验数据分析表明,相比传统的MOMEDA方法、MCKD方法和快速谱峭度方法,该方法能成功地提取微弱的故障冲击特征且更加明显,提高了行星轮轴承故障诊断的准确性和鲁棒性。

    Abstract:

    The fault vibration signal of planetary bearing is affected by complex transm ission paths,strong background noise andgear vibration interference,which makes the fault features weak and difficult to extract.To address these issues,a parameter adaptive multi point optimal minimum entropy deconvolution adjusted(PA-MOMEDA)is proposed to extract the weak fault featuresof planetary bearing.In order to overcome the shortcomings of MOMEDA relying on human experience to select the main parameters,a new multirobjective optimization index is established,and the optimal parameters of MOMEDA are automatically determined by the particle swarms optimization algorithm.The MOMEDA with the optimal parameters is utilized to deconvolve theplanetary bearing fault signal.Aiming at the problem of the serious edge effect of MOMEDA,a waveform extension strateg is designed to adaptively compensate the unconvoluted signal,which significantly enhances the deconvolution ability of MOMEDA forweak fault features.Envelope demodulation processing for the enhanced deconvolution signal is caried out to extract fault characteristic frequencies and identify fault type.The feasibility of the proposed method is validated using both the simulated planetarybearing signal and practical experimental signals.Moreover,compared with the traditional MOMED,MCKD and fast spectral kurtosis methods,the proposed method can extract weak fault impact characteristics and realize the accurate diagnosis of the planetarybearing fault.

    参考文献
    相似文献
    引证文献
引用本文

王朝阁,李宏坤,胡少梁,胡瑞杰,任学平.利用参数自适应多点最优最小熵反褶积的行星轮轴承微弱故障特征提取[J].振动工程学报,2021,34(3):633~645.[WANG Chao-ge, LI Hong-kun, HU Shao-liang, HU Rui-jie, REN Xue-ping. Weak fault feature extraction of planetary bearing based on parameter adaptive MOMEDA[J]. Journal of Vibration Engineering,2021,34(3):633~645.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司