随机卷积神经网络的内燃机健康监测方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK428;TH17

基金项目:

工信部“绿色智能内河船舶创新专项”资助项目;国家重点研发计划资助项目(2019YFE0104600);国家自然科学基金资助项目(51909200)


Health monitoring method of the internal combustion engine based on the Random Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种深度学习网络即结构?随机卷积神经网络,用于实现内燃机的智能健康监测。集成多个单一的卷积神经网络构成新的网络构架,通过卷积计算和池化操作对振动信号进行自动特征提取。在随机卷积神经网络结构中,应用 Adabound 优化器使学习率自适应变化,从而加快模型的权值更新。同时通过 Dropout 技术使结构中神经元随机失活,防止对训练数据进行复杂的协同响应,通过 Dempster 合成规则融合各个网络模型的诊断结果。所提出的健康监测方案用于对内燃机工作时的振动信号进行分析。实验证明,该方法克服了传统的数据驱动和卷积神经网络健康监测方法的局限性,摆脱了对人工特征设计的依赖,并且有较好的诊断性能,能够有效地对内燃机进行健康监测。

    Abstract:

    Automatic and accurate identification on health condition of internal combustion engine system is still a major challenge in modern industry because of its complex mechanical system. In this paper,an innovative deep learning model called Random Convolutional Neural Networks(RCNNs)is proposed for intelligent health monitoring of internal combustion engine. This novel network framework is constructed with several individual convolutional neural networks,which can automatically extract the feature of vibration signals by convolutional calculation and pooling operation. An improved optimizer Adabound and the technique of Dropout are applied in this framework of RCNNs. The Adabound optimizer uses adaptive learning rates to adjust the network’s weight.Meanwhile,the Dropout technique makes neurons drop out with a probability in order to preventing complex co-adaptations on training data. The Dempster’s combinational rule is used to obtain the fusion diagnosis results from several individual networks.The proposed health monitoring scheme is used to analyze the experimental vibration signals acquired from engine. Experiments prove that the proposed RCNNs can overcome the limitations of health monitoring method based on traditional data-driven or convolutional neural network,which gets rid of dependence on the manual feature design and delivers state-of-the-art performances.Therefore,the proposed RCNNs method is suitable for machine health monitoring.

    参考文献
    相似文献
    引证文献
引用本文

王瑞涵,陈 辉,管 聪.随机卷积神经网络的内燃机健康监测方法研究[J].振动工程学报,2021,34(4):849~860.[WANG Rui-han, CHEN Hui, GUAN Cong. Health monitoring method of the internal combustion engine based on the Random Convolutional Neural Networks[J]. Journal of Vibration Engineering,2021,34(4):849~860.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-30
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司