自适应噪声加权优选经验模态分解及其在机械故障诊断中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.3;TH132.41;TN911.7

基金项目:

国家重点研发计划(2017YFCO805100);国家自然科学基金资助项目(51975004);安徽理工大学矿山智能装备与技术安徽省重点实验室开放基金资助项目(201902005)


Weighted mean-optimized empirical mode decomposition with adaptive noise and its applications in mechanical fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自适应噪声辅助集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)解决了集成经验模态分解在集成平均过程中的分解不完备问题,但噪声残留和虚假分量问题仍然存在 。 针 对 CEEMDAN 的 不 足 ,提 出 了 自 适 应 噪 声 加 权 优 选 经 验 模 态 分 解(Weighted Mean ?optimized Empirical Mode Decomposition with Adaptive Noise,WMEMDAN)。该方法用改进的均值曲线构造方式提取内禀模态函数(IMF),以正交性最小为依据,从不同权重的迭代筛分结果中选取出最优 IMF,改善了 CEEMDAN 的分解能力,同时通过对不同权重下的分解结果进行筛选,确保每一阶的 IMF 分量都是整体最优,减少虚假分量和残留噪声。仿真和实验信号分析结果表明,WMEMDAN 在减少虚假分量和提高分解精度等方面具有优势。将所提方法应用于滚动轴承和齿轮的故障诊断,分析结果表明了方法的有效性和优越性。

    Abstract:

    Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)can solve the incomplete decomposition of ensemble empirical mode decomposition(EEMD)in integration averaging process,but the residual noise and false components of CEEMDAN remain not to be solved. To overcome shortcomings of CEEMDAN,the weighted mean-optimized empirical mode decomposition with adaptive noise(WMEMDAN)is proposed. In this method,the intrinsic mode function(IMF)is extracted by the improved mean curve construction,and the optimal IMF is selected from the iterative screening results of different weights based on the minimum orthogonality. Therefore,WMEMDAN can improve the decomposition ability of CEEMDAN. At the same time,the decomposition results under different weights are screened to ensure that each order of IMF component is optimal,which can reduce the residual noise and false components. The analysis of simulation experiment signal shows that WMEM DAN has advantages in reducing false components and improving decomposition accuracy. The proposed method is applied to bearing fault diagnosis and gear fault diagnosis. The results show that the proposed method is effective and superior.

    参考文献
    相似文献
    引证文献
引用本文

郑近德,苏缪涎,潘海洋,童靳于,潘紫微.自适应噪声加权优选经验模态分解及其在机械故障诊断中的应用[J].振动工程学报,2021,34(4):869~878.[ZHENG Jin-de, SU Miao-xian, PAN Hai-yang, TONG Jin-yu, PAN Zi-wei. Weighted mean-optimized empirical mode decomposition with adaptive noise and its applications in mechanical fault diagnosis[J]. Journal of Vibration Engineering,2021,34(4):869~878.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-30
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司