基于深度 Q 学习和连续小波变换的旋转机械故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.+3;TH133

基金项目:

国家自然科学基金资助项目(51975079);国家重点研发计划(2018YFB1306601);重庆市教委科学技术研究项目(KJQN201900721);重庆市自然科学基金资助项目(cstc2016jcyjA0467);重庆市北碚区科学技术局技术创新与应用示范项目(2020-6)


Fault diagnosis method of rotating machinery based on deep Q-learning and continuous wavelet transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对旋转机械故障诊断中深度神经网络特征学习能力强、决策能力弱的问题,利用卷积神经网络拟合强化学习中的 Q 函数,通过 Q?learning 算法学习策略实现故障诊断,提出了基于深度 Q 学习和连续小波变换的旋转机械故障诊断方法。对振动信号进行连续小波变换得到时间尺度矩阵,构建出环境状态空间,实现智能体与环境间的交互;用 CNN 拟合 Q?learning 中的 Q 函数得到深度 Q 网络,将环境返回的状态输入到深度 Q 网络中学习故障数据具体的状态特征表示,并据此表征学习策略,智能体采用 ε?贪婪方式决策出动作,利用奖励发生器对动作进行评价;通过智能体与环境间不断交互学习以最大化 Q 函数值,得到最优策略实现故障诊断。这种方式融合了深度学习的感知能力和强化学习的决策能力,从而有效提高了诊断能力。通过不同工况及不同样本量下齿轮箱故障诊断实验证明了所提方法的有效性。

    Abstract:

    To solve the problems of strong neural network feature learning and weak decision-making ability in fault diagnosis of rotating machinery,a convolutional neural network(CNN)is used to fit the Q function in reinforcement learning,and the learning strategy is implemented by the Q-learning algorithm. For fault diagnosis,a fault diagnosis method for rotating machinery based on deep Q-learning and continuous wavelet transform is proposed. A continuous wavelet transform is performed on the vibration signal to obtain a time-scale matrix,and an environmental state space is constructed for the interaction between the agent and the environment. CNN is used to fit the Q function in Q-learning to obtain a deep Q network to convert the environment. The returned state is input to the deep Q network to learn the specific state feature representation of the fault data,and the learning strategy is characterized accordingly. The agent uses ε-greedy mode to decide the action and reward generator to evaluate the action. The agent continuously interacts with the environment to maximize the Q function value and obtain the optimal strategy for fault diagnosis. This method combines the perceptual ability of deep learning and the decision-making ability of reinforcement learning,so as to effectively improve the diagnostic ability. The effectiveness of the proposed method is proved by the fault diagnosis experiments of gearbox under different working conditions and different sample sizes.

    参考文献
    相似文献
    引证文献
引用本文

陈仁祥,周 君,胡小林,韩兴波,朱孙科,张 晓.基于深度 Q 学习和连续小波变换的旋转机械故障诊断方法[J].振动工程学报,2021,34(5):1092~1100.[CHEN Ren-xiang, ZHOU Jun, HU Xiao-Lin, HAN Xing-bo, ZHU Sun-ke, ZHANG Xiao. Fault diagnosis method of rotating machinery based on deep Q-learning and continuous wavelet transform[J]. Journal of Vibration Engineering,2021,34(5):1092~1100.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-23
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司