深度嵌入度量学习的机械跨工况故障识别方法
DOI:
CSTR:
作者:
作者单位:

1.清华大学工业工程系;2.清华大学能源与动力工程系;3.苏州大学轨道交通学院;4.北京交通大学载运工具先进制造与测控技术教育部重点实验室

作者简介:

通讯作者:

中图分类号:

TH113;TH17

基金项目:

国家自然科学基金(51875375),中国博士后科学基金特别资助(2021T140370)、面上资助(2021M691777)。


Deep embedding metric learning for machinery fault identification across different working conditions
Author:
Affiliation:

1.Department of Industrial Engineering, Tsinghua University;2.Department of Energy and Power Engineering, Tsinghua University;3.School of Rail Transportation, Soochow University;4.Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology of Ministry of Education, Beijing Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统数据驱动的机械装备故障诊断方法依赖目标工况下的完备数据,而装备实际运行工况复杂多变、且难以预测,数据获取困难。针对上述问题,提出了一种深度嵌入度量网络(Deep embedding metric network, DEMN)的机械跨工况故障识别方法,该方法利用装备在已知工况下的数据学习鲁棒特征表示,建立适用于未知工况场景下的泛化智能故障识别模型。首先,基于多尺度卷积神经网络(Multiscale convolutional neural network, MCNN)获取故障信号的深度嵌入特征。然后利用度量学习方法引导判别性特征学习,构建特征嵌入空间下的三元组损失(Triplet loss, TL),利用粒子群算法(Particle swarm optimization, PSO)对间隔参数进行寻优。通过缩小装备健康状态类内距离、扩大类间距离,降低工况变化对健康状态映射关系的影响。实验结果表明,所提方法在齿轮箱跨工况故障诊断实验中表现出良好的识别精度与泛化性能。

    Abstract:

    The complete training data under target working conditions are necessary for the traditional data-driven fault diagnosis methods of machinery. However, the actual working conditions of mechanical equipment are complicated and difficult to predict, and thus it is difficult to obtain sufficient training data. To solve this problem, this paper proposed a deep embedding metric network (DEMN) for mechanical fault identification across different working conditions. The proposed method uses the data under known working conditions to learn robust feature representation, and then establish the generalized fault diagnosis model for the unseen working conditions. First, the deep embedding features of fault signal are extracted by the multiscale convolutional neural network (MCNN). Then, the triplet loss-based metric learning objective is optimized to enhance the discriminant ability of classification boundary. Particle swarm optimization (PSO) algorithm is executed to the search the optimal margin in triplet loss. By facilitating the intra-class compactness and the inter-class separability, the influence of working condition changes to fault relationship mapping is significantly reduced. The experimental results show that the proposed method presents superior accuracy and generalization performance in gearbox fault diagnosis across different working conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-28
  • 最后修改日期:2021-11-29
  • 录用日期:2021-12-16
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司