加速度-位移关系的贝叶斯推理方法
DOI:
CSTR:
作者:
作者单位:

1.北京工业大学;2.中国地震局地球物理研究所;3.中国人民大学高瓴人工智能学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Bayesian inference-based acceleration-displacement relation recognition method
Author:
Affiliation:

1.BEIJING UNIVERSITY OF TECHNOLOGY;2.Institute of Geophysics, China Earthquake Administration;3.Hillhouse School of Artificial Intelligence, Renmin University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    动力位移是地震工程、军事武器设计和结构健康监测等领域重要的物理量,但在实际测试过程中,通常能直接量测的只有振动加速度信号。由于受环境等不确定性测试条件影响,加速度信号不可避免地含有低频和高频噪声,导致了在加速度积分过程中,速度和位移时程会产生较为明显的漂移现象。因此,合理、科学地获取加速度-位移关系具有重要的科学研究和实际工程应用意义。本文基于贝叶斯理论框架,构建了动力位移机器学习识别方法,针对不同噪声工况(白噪声、人工噪声)反演获取了位移响应,识别给出的动位移与解析位移基本一致;并利用大型振动台试验数据,对比了不同性能加速度传感信号反演的位移,并分析了其不确定性。结果表明:该动力位移机器学习识别方法在加速度-位移关系表征方面具备一定的优势,可不依赖对加速度信号的处理实现位移求解,从而避免了噪声累积误差导致的位移积分失真。

    Abstract:

    Dynamic displacement is an important physical quantity in the fields of seismic engineering, military weapon design, and structural health monitoring. In the actual test process, the acceleration can usually be directly measured. Due to the uncertain test conditions such as the environment, the acceleration signal is unavoidable contains low-frequency and high-frequency noise, which causes a significant drift in velocity and displacement during the acceleration integration process. Therefore, great scientific research and practical engineering significance to obtain a reasonable and scientific acceleration-displacement relationship. Based on the theoretical framework of Bayesian inference, a machine learning dynamic displacement identification method is constructed. The results show that, the displacement response obtained by inversion for different noise conditions (white noise, artificial noise) is basically consistent with the analytical displacement; the displacements of inversion of acceleration sensor signals with different performances are compared by using a large shaking table test data, and their uncertainty are analyzed. The results show that this method has certain advantages in the characterization of the acceleration-displacement relationship, and can achieve the displacement solution without relying on the processing of the acceleration signal, thereby avoiding the displacement integral distortion caused by the accumulated noise error.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-09
  • 最后修改日期:2022-04-06
  • 录用日期:2022-04-26
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司