采用Pareto人工鱼群算法的结构健康监测传感器位置多目标优化
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311.3;TU392;O329

基金项目:

国家自然科学基金资助项目(51608126);福州大学科研启动项目(GXRC-20054)


Multi-objective sensor optimal placement for structural health monitoring based on Pareto artificial fish swarm algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    发展基于Pareto 多目标人工鱼群算法(Multi?Objective Artificial Fish Swarm Algorithm,MO?AFSA),解决结构健康监测中传感器位置多目标优化的问题。构建与观测模态线性独立性、结构损伤灵敏度和损伤信息冗余性有关的传感器位置多目标优化目标函数;改进人工鱼群算法的追尾和觅食行为,并引入外部档案集以处理寻优过程中的互不支配解,结合Pareto 概念选取与理想点欧式距离最近的Pareto 解为最优解;以三层平面钢框架结构为数值算例,用基于Pareto 人工鱼群算法求解传感器位置多目标优化方案,并进行结构损伤识别。研究结果表明:用所提方法得到的传感器测点在结构中均匀分布,获取的结构损伤信息更为全面,冗余性低,振型独立性好,能够较精确地识别损伤位置和损伤程度,并且抗噪性能好。

    Abstract:

    An artificial fish swarm algorithm based on Pareto multi-objective optimization is proposed for optimal sensor placement in structural health monitoring. The modal independence,damage sensitivity and damage redundancy are firstly utilized to establish the sensor multi-objective optimization function. Then the rear-end and foraging behaviors in the artificial fish swarm algorithm are improved,and the external file sets are introduced for the centralized processing of the mutually non-dominating solutions in the optimization process. The Pareto solution with the closest Euclidean distance at the ideal point is considered as the final optimal solution. A planar frame structure is finally used as a numerical study to verify the proposed artificial fish swarm algorithm based on Pareto multi-objective optimization for sensor optimal placement. The results obtained from the proposed method give a fairly uniform spacing for the sensor locations,and the information obtained by the measurements is more comprehensive,with low redundancy and good mode independence. The damage detection results also indicate the robustness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

张笑华,吴圣斌,方圣恩,陈凌秀.采用Pareto人工鱼群算法的结构健康监测传感器位置多目标优化[J].振动工程学报,2022,35(2):351~358.[ZHANG Xiao-hua, WU Sheng-bin, FANG Sheng-en, CHEN Ling-xiu. Multi-objective sensor optimal placement for structural health monitoring based on Pareto artificial fish swarm algorithm[J]. Journal of Vibration Engineering,2022,35(2):351~358.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-31
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司