基于改进小波阈值降噪的滚动轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33

基金项目:

国家自然科学基金资助项目(51975470);陕西省自然科学基础研究基金资助项目(2020JM-114)


Rolling bearing fault diagnosis method based on improved wavelet threshold denoising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承早期故障信号存在大量噪声使得提取故障特征困难的问题,提出了一种基于新改进小波阈值的降噪方法。该方法是通过采用互补集合经验模态分解(CEEMD)方法将原始故障信号进行分解,得出各阶本征模态函数(IMF)分量;选取关键的IMF 分量进行重构信号,将重构信号经过新改进小波阈值算法和快速谱峭度进行滤波降噪;进行Hilbert 包络解调,得出滚动轴承的故障特征频率。分别用仿真噪声信号和滚动轴承的实验信号对该方法进行验证,并将新改进小波阈值算法与传统的小波硬阈值和小波软阈值算法进行比较分析,结果表明该方法可以有效提高故障信号的信噪比,降噪效果明显,能有效获得滚动轴承的故障特征频率。

    Abstract:

    Aiming at the problem that a large amount of noise in early fault signals of rolling bearings makes it difficult to extract fault features,a new and improved wavelet threshold-based noise reduction method is proposed. This method uses the complementary set empirical mode decomposition(CEEMD)method to decompose the original fault signal to obtain the intrinsic mode function(IMF)components of each order. The key IMF components are selected to reconstruct the signal,and the reconstruction signal is filtered through the new improved wavelet threshold algorithm and fast spectral kurtosis to reduce noise. The Hilbert envelope demodulation is performed to obtain the characteristic frequency of the rolling bearing fault. The method is verified by the simulated noise signal and the experimental signal of the rolling bearing,and the new improved wavelet threshold algorithm is compared and analyzed with the traditional wavelet hard threshold and wavelet soft threshold algorithm. The results show that the method can effectively improve the reliability of the fault signal. Signal noise ratio and noise reduction effect are obvious,and the fault characteristic frequency of the rolling bearing can be effectively obtained.

    参考文献
    相似文献
    引证文献
引用本文

曹玲玲,李晶,彭镇,张银飞,韩文冬,符寒光.基于改进小波阈值降噪的滚动轴承故障诊断方法[J].振动工程学报,2022,35(2):454~463.[CAO Ling-ling, LI Jing, PENG Zhen, ZHANG Yin-fei, HAN Wen-dong, FU Han-guang. Rolling bearing fault diagnosis method based on improved wavelet threshold denoising[J]. Journal of Vibration Engineering,2022,35(2):454~463.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-31
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司