多激励下结构反共振频率的计算和配置
DOI:
CSTR:
作者:
作者单位:

大连理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),中央高校基本科研业务费专项资金


Computation and assignment of antiresonant frequency of structure under multiple excitation forces.
Author:
Affiliation:

Fund Project:

The Key Program of the Chinese Academy of Sciences,Fundamental Research Funds for the Central Universities

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    反共振频率是指结构在激励力作用下,某个自由度的振动响应为零的频率。反共振频率在结构的局部振动控制中具有重要意义。本文提出了一种结构在多激励作用下反共振频率的计算方法,并基于该计算方法和部分特征结构配置方法实现了结构在多激励作用下反共振频率的配置。该计算方法是基于质量阵、刚度阵和激励力向量构造出的线性矩阵,使得矩阵的特征值即为多激励作用下的反共振频率。在本文中,分别以线性面载荷激励的矩形板和多个激励下的弹簧质量系统为例,计算了反共振频率,并使用质量阵/刚度阵修改方法和附加简单振子方法配置了结构的反共振频率。数值结果验证了计算方法和配置的准确性。

    Abstract:

    Antiresonance is of great significance in the local vibration control of structures. Generally, the antiresonant frequency refers to the frequency at which the vibration response of a degree of freedom is zero when a structure is subjected to an excitation force. In this paper, a method for computing the antiresonant frequency under multiple excitation forces is proposed. And the antiresonant frequency could also be assigned with calculation method and partial eigenvector assignment. A linear matrix is constructed with the mass matrix, the stiffness matrix and the excitation force vector, so that the eigenvalue of the linear matrix is the antiresonant frequency under multiple excitation forces. In this paper, the antiresonant frequencies are calculated for a rectangular plate excited by linear surface loads and a spring-mass system under multiple excitations. In addition, the antiresonant frequency of the structures is assigned by structural modification and attaching a simple oscillator. Numerical results verify the accuracy of the calculation method and configuration method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-23
  • 最后修改日期:2022-04-19
  • 录用日期:2022-05-02
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司