圆柱滚子轴承振动信号时频特征提取及状态识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TP133.33

基金项目:

国家自然科学基金资助项目(11202128);广东省自然科学基金资助项目(2019A1515011780)


Time-frequency feature extraction and state recognition of vibration signal of cylindrical roller bearing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为深入研究变工况下滚动轴承故障特征信息提取及状态识别方法,分别以圆柱滚子轴承三种典型状态件(轴承正常、外圈磨损、滚动体磨损)为研究对象,开展变工况下的圆柱滚子轴承振动信号特性分析。搭建了某型特种车辆变速箱圆柱滚子轴承实验台架,通过实验台架采集了不同输入转速作用下的圆柱滚子轴承故障振动信号。在此基础上,采用广义 S 变换(Generalized Stockwell Transform,GST)对原始振动信号进行时频域转换,将获得的二维时频矩阵作为特征矩阵;对特征矩阵进行奇异值分解(Singular Value Decomposition,SVD),获得表征圆柱滚子轴承 典 型 状 态 件 特 征 信 息 的 奇 异 值 向 量 组 ;将 提 取 的 奇 异 值 向 量 组 输 入 支 持 向 量 机(Support Vector Machine,SVM),利用 SVM 实现圆柱滚子轴承不同状态类型识别。结果表明:该方法可有效实现变工况下圆柱滚子轴承振动信号特征信息提取及状态识别,为旋转机械设备在线监测提供了一种有效手段。

    Abstract:

    Conducting a study for extracting the fault feature information of the rolling element bearing under variable conditions. Three typical state components of cylindrical roller bearings(normal bearing,outer ring wear,rolling element wear)are selected as the research targets. An experimental bench for a cylindrical roller bearing of a special vehicle gearbox is built. The vibration signals of cylindrical roller bearing failures under different input speeds are collected through the experimental bench. The generalized Stockwell transform(GST)is used to transform the raw vibration signal into the time-frequency domain,and the obtained two-dimensional time-frequency matrix is used as the feature matrix. The characteristic parameters are obtained by performing the singular value decomposition(SVD)on the feature matrix. The extracted characteristic parameters are input into a Support Vector Machine(SVM),and the SVM is used to realize the identification of different states of the rolling bearing. The results show that the proposed method can effectively achieve the vibration signal feature information extraction and state recognition under variable operating conditions. It can provide an effective mean for the online monitoring of rotating machinery equipment.

    参考文献
    相似文献
    引证文献
引用本文

刘湘楠,赵学智,何宽芳.圆柱滚子轴承振动信号时频特征提取及状态识别[J].振动工程学报,2022,35(4):932~941.[LIU Xiang-nan, ZHAO Xue-zhi, HE Kuan-fang. Time-frequency feature extraction and state recognition of vibration signal of cylindrical roller bearing[J]. Journal of Vibration Engineering,2022,35(4):932~941.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司