增强辛几何模态分解和自组织自编码卷积网络的电机轴承工况识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.3

基金项目:

国家自然科学基金资助项目(51875032);北京建筑大学市属高校基本科研业务费专项资金资助项目(X20061)


Motor bearing condition identification of enhanced symplectic geometric mode decomposition and self-organizing auto-encoder convolution network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电机轴承振动信号特征提取与工况识别困难的问题,提出一种基于增强辛几何模态分解(ESGMD)和自组织自编码卷积网络(SOAECN)的电机轴承工况识别方法。在辛几何模态分解(SGMD)的基础上将电机轴承振动信号自适应分解为初始辛几何模态分量(ISGMCs),并利用改进凝聚聚类算法对 ISGMCs 重新组合得到聚类辛几何模态分量(CSGMCs);提出一种综合评价指标,利用此指标筛选能反映振动信号特征的 CSGMCs 分量并重构;结合卷积神经网络和小波自编码器,构造自编码卷积网络(AECN),并在 AECN 基础上改进其损失函数且引入自组织策略,进而构造 SOAECN;将重构后的振动信号输入 SOAECN 进行自动特征提取与工况识别。实验结果表明:ESGMD?SOAECN 方法的工况识别率达到了 98.76%,自动特征提取能力和工况识别能力优于深度稀疏自动编码器、深度降噪自动编码器和深度信念网络等深度学习方法,可为电机轴承自动工况识别提供参考。

    Abstract:

    Aiming at the difficulty of vibration signals feature extraction and condition identification of motor bearings,a method based on enhanced symplectic geometry mode decomposition(ESGMD)with self-organizing auto-encoder convolution network(SOAECN)is proposed. On the basis of symplectic geometry mode decomposition(SGMD),the vibration signals of motor bearing are adaptively decomposed into initial symplectic geometric mode component(ISGMCs). The ISGMCs are adaptively reorganized by improved condensed clustering method to obtain the clustering symplectic geometric modal component (CSGMCs). A new comprehensive evaluation index is proposed,which is used to screen and reconstruct the CSGMCs that can reflect the characteristics of vibration signals. Combined convolution neural network with wavelet auto-encoder,the auto-encoder convolution network(AECN)is constructed. Its loss function is improved and self-organizing strategy is introduced on the basis of AECN,then the SOAECN is constructed. The reconstructed vibration signals are fed into SOAECN for automatic feature learning and condition identification. Experimental results indicate that ESGMD-SOAECN reaches 98.98% of condition identification rate. The ability of condition automatic feature extraction and automatic condition identification is better than deep learning methods such as deep sparse auto-encoder,deep de-noising auto-encoder,deep belief network and so on. The results can provide a reference for the identification of motor bearing conditions.

    参考文献
    相似文献
    引证文献
引用本文

陈志刚,杜小磊,王衍学.增强辛几何模态分解和自组织自编码卷积网络的电机轴承工况识别[J].振动工程学报,2022,35(4):958~968.[CHEN Zhi-gang, DU Xiao-lei, WANG Yan-xue. Motor bearing condition identification of enhanced symplectic geometric mode decomposition and self-organizing auto-encoder convolution network[J]. Journal of Vibration Engineering,2022,35(4):958~968.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司