分数阶导数系统非平稳随机振动灵敏度分析的时域显式方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O324;TU311.3

基金项目:

国家自然科学基金资助项目(51678252);广州市科学研究计划重点项目(201804020069)


Explicit time-domain method for sensitivity analysis of nonstationary random vibration of systems with fractional derivatives
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分数阶导数模型是描述黏弹性材料本构关系的理想模型。进行了分数阶导数线性系统非平稳随机振动的灵敏度分析。建立分数阶导数系统动力响应的时域显式表达式;采用灵敏度分析的直接求导法或伴随变量法,推导系统动力响应灵敏度的时域显式表达式;提出分数阶导数系统响应统计矩灵敏度高效计算的时域显式方法。所提出的基于直接求导法和伴随变量法的时域显式方法,分别适用于少设计变量和多设计变量两种情况下的响应统计矩灵敏度分析。以非平稳地震激励下设置分数阶导数黏弹性阻尼器的层剪切结构为数值算例,验证了所提方法的计算精度和计算效率。

    Abstract:

    Fractional derivative models are capable of describing the constitutive behaviors of viscoelastic materials. This paper is devoted to the sensitivity analysis of nonstationary random vibration of linear systems comprising fractional derivative terms. The explicit time-domain expressions of dynamic responses are firstly established for the system with fractional derivatives. The sensitivities of dynamic responses are then derived using the direct differentiation method(DDM)or the adjoint variable method(AVM).On the basis of the explicit expressions of dynamic responses and their sensitivities,an explicit time-domain method(ETDM)is proposed for efficient calculation of the sensitivities of statistical moments of responses. The proposed DDM- and AVM-based ETDM are applicable to the scenarios with less and more design variables,respectively. A numerical example involving a shear-type structure under nonstationary seismic excitations and with viscoelastic dampers modelled by fractional derivatives is presented to validate the computational accuracy and efficiency of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

冼剑华,苏 成.分数阶导数系统非平稳随机振动灵敏度分析的时域显式方法[J].振动工程学报,2022,35(5):1058~1067.[XIAN Jian?hua, SU Cheng. Explicit time-domain method for sensitivity analysis of nonstationary random vibration of systems with fractional derivatives[J]. Journal of Vibration Engineering,2022,35(5):1058~1067.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-23
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司