自适应窗口旋转优化短时傅里叶变换的变转速滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

1.兰州理工大学机电工程学院;2.兰州交通大学机电工程学院;3.河西学院物理与机电工程学院;4.漳州卫生职业学院医学技术系;5.兰州理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51765034);甘肃省科学计划项目(21JR7RA305)


Fault diagnosis of rolling bearings under variable speed conditions based on Adaptive Window Rotation Optimization Short-Time Fourier Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对短时傅里叶变换 (Short-Time Fourier Transform, STFT) 中固定窗效应所导致能量集中度不高的问题,提出了一种自适应窗口旋转优化短时傅里叶变换 (Adaptive Window Rotation Optimization Short-Time Fourier Transform, AWROSTFT) 的变转速滚动轴承故障诊断方法。首先,用变分模态分解 (Variational Mode Decomposition, VMD) 对原始振动信号进行降噪,并利用粒子群优化算法 (Particle Swarm Optimization, PSO) 解决了VMD参数选择困难的问题;其次,利用切线思想对STFT中水平窗口自适应匹配一系列的旋转算子,使得窗口旋转方向接近甚至等于瞬时调频率,提高了时频表示的能量集中度;最后用谱峰检测法提取到的瞬时频率除以转频曲线,将其结果与轴承的故障特征系数进行匹配,以此实现变转速工况下滚动轴承的故障诊断。仿真和实验的结果都表明,本文所提方法能够兼顾PSO-VMD和AWROSTFT的优势,通过切线思想自适应的旋转窗口使得信号与窗函数在全局上的夹角都为零,从而达到提高能量集中度和锐化时频脊线的目的,实现了变转速工况下滚动轴承的故障诊断。

    Abstract:

    Aiming at the problem of low energy concentration caused by the fixed window effect in STFT, a fault diagnosis method of rolling bearing under variable speed conditions based on Adaptive Window Rotation Optimization Short-Time Fourier Transform (AWROSTFT) is proposed. Firstly, Variational Mode Decomposition (VMD) is used to reduce the noise of the original vibration signal. Particle Swarm Optimization (PSO) is used to solve the complex problem of VMD parameter selection. Secondly, a series of rotation operators are adaptively matched to the horizontal window in STFT by using the tangent idea so that the rotation direction of the window is close to or even equal to the instantaneous frequency modulation, and the energy concentration of time-frequency representation is improved. Finally, the instantaneous frequency extracted by the spectral peak detection method is divided by the frequency transformation curve. The result is matched with the fault characteristic coefficient of the bearing to realize the fault diagnosis of the rolling bearing under variable speed conditions. The results of simulation and experiment signals show that the proposed method can take into account the advantages of PSO-VMD and AWROSTFT. The angle between the signal and the window function is zero globally through the adaptive rotation window with the idea of tangency to improve the energy concentration, sharpen the time-frequency ridge line, and realize the fault diagnosis of rolling bearings under variable speed conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-31
  • 最后修改日期:2023-01-03
  • 录用日期:2023-01-06
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司