随机车载激励的斜拉索非线性振动响应极值预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U441+.3;O322

基金项目:

国家自然科学基金资助项目(12062006,11962006);信阳市 2022 年科技发展计划项目(20220068)


Extreme prediction of nonlinear vibration response of stay cable under random vehicle excitation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了预测随机车辆荷载作用下斜拉索非线性振动的响应极值,采用蒙特卡罗随机抽样法生成随机车流荷载,求解随机车流荷载在斜拉索梁端和塔端产生的位移;将索端车致位移作为斜拉索的外部激励输入,采用龙格?库塔数值方法求解斜拉索的非线性空间耦合振动响应;基于经典 Rice 公式极值预测理论,提出随机车载激励的斜拉索非线性振动响应极值预测方法。实际工程的应用结果表明:车辆荷载为斜拉索的梁端提供了较大的竖向和纵向位移激励,为塔端提供了较大的纵向位移激励,其对拉索的轴向和面内振动响应影响较大,对拉索的面外振动响应影响较小;斜拉索的车致振动响应极值随着车流密度和重现期的增大而增大;经典 Rice 公式对斜拉索车致振动响应界限跨阈次数的拟合效果很好,提出的斜拉索非线性振动响应极值预测方法有效可靠且在工程实践中应用方便。

    Abstract:

    In order to predict the extreme value of nonlinear vibration response of stay cable under random vehicle load. Firstly,Monte-Carlo random sampling method is used to generate random traffic flow load, and the displacement of stay cable beam end and tower end under random traffic flow load is solved. Then, the vehicle induced displacement at the beam end and tower end of the stay cable is taken as the external excitation input of the stay cable, and the nonlinear spatial coupling vibration response of the stay cable is solved by Runge-Kutta numerical method. Finally, based on the extreme value prediction theory of classical rice formula, an extreme value prediction method of nonlinear vibration response of stay cable under random vehicle excitation is proposed. The practical engineering application results show that the vehicle load provides a large vertical and longitudinal displacement excitation for the beam end of the cable, and a large longitudinal displacement excitation for the tower end, which has a great influence on the axial and in-plane vibration response of the cable, and a small influence on the out-of-plane vibration response of the cable. The extremum of vehicle-induced vibration response of stay cable increases with the increase of traffic density and recurrence period. The classical Rice formula has a good fitting effect on the threshold crossing times of vehicle-induced vibration response limit of stay cable. The prediction method of extreme value of nonlinear vibration response of stay cable proposed in this paper is effective, reliable and convenient to be applied in engineering practice.

    参考文献
    相似文献
    引证文献
引用本文

赵 辉,陈水生,李锦华,任永明.随机车载激励的斜拉索非线性振动响应极值预测[J].振动工程学报,2023,36(2):487~497.[ZHAO Hui, CHEN Shui-sheng, LI Jin-hua, REN Yong-ming. Extreme prediction of nonlinear vibration response of stay cable under random vehicle excitation[J]. Journal of Vibration Engineering,2023,36(2):487~497.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-11
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司