无限隐 Markov 模型在缺失数据轴承退化趋势预测中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33;TN911.6

基金项目:

国家自然科学基金资助项目(52075236);江西省自然科学基金重点项目(20212ACB202005);装备预研基金项目(6142003190210);南昌航空大学研究生创新专项资金资助项目(YC2020079);陕西省矿山机电装备智能监测重点实验室开放基金重点项目(SKL-MEEIM201901)


Infinite hidden Markov model and its application in the prediction of bearing degradation trends with missing data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    相比较于在完整数据下设备性能退化预测,缺失数据下的预测是更加困难的,也是更有意义的。然而,现有的轴承性能退化预测方法都未考虑缺失数据下的预测,基于此,提出了一种基于无限隐马尔可夫模型的缺失数据下轴承退化预测方法。在提出的方法中,通过建立无限隐马尔可夫预测模型,预测了滚动轴承样本数据在振荡阶段所缺失的数据点,形成新的完整数据。同时,再使用建立的预测模型对新的完整数据进行单步预测。实验结果表明,与真实值对比,得到的预测数据具有较小的平均误差值;对比真实值、完整数据下的预测值和新的完整数据下的预测值,验证了提出方法的有效性,能够反映滚动轴承退化的变化趋势。提出的方法可为数据缺失下滚动轴承的退化趋势预测提供一种思路,具有重要的理论价值和工程应用价值。

    Abstract:

    Compared with the equipment performance degradation prediction under the complete data, the prediction under the missing data is more difficult and more meaningful. However, the existing prediction methods of bearing performance degradation do not consider the prediction under missing data. Based on the above problem, a bearing degradation prediction method based on infinite hidden Markov model (iHMM) is proposed under the missing data. In the proposed method, an iHMM prediction model with wavelet entropy as the degradation feature is established to predict the missing data points of rolling bearing sample data and form new complete data. Then the proposed prediction model is used to make single-step predictions on the new complete data.The experiment results show that compared with the real value, the obtained prediction data has a smaller average error. Compare the real value, the predicted value under the complete data, and the predicted value under the new complete data, the prediction data obtained by the iHMM prediction model can also well reflect the degradation trend of rolling bearing. The proposed method can provide a new idea for predicting the degradation trend of rolling bearings under the missing data. Therefore, the proposed method has important theoretical value and engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

李志农,李舒扬,柳 宝,陶俊勇.无限隐 Markov 模型在缺失数据轴承退化趋势预测中的应用[J].振动工程学报,2023,36(2):574~581.[LI Zhi-nong, LI Shu-yang, LIU Bao, TAO Jun-yong. Infinite hidden Markov model and its application in the prediction of bearing degradation trends with missing data[J]. Journal of Vibration Engineering,2023,36(2):574~581.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-11
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司