多维强非线性振动系统的复动频率法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O322

基金项目:

国家自然科学基金资助项目(12072234)


Complex dynamic frequency method for multidimensional strongly nonlinear vibration system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机电耦合系统中,常会附加半自由度的方程。为了求解与这类方程有关的强非线性振动系统,在单自由度复动频率法的基础上引入新的平衡规则,使其可应用于一个半自由度系统,得到 Duffing 振子强迫振动的渐近解和幅频响应关系。为进一步拓展该方法的使用范围,通过增加新的待定频率和动态频率,使复动频率法可用于分析两自由度强非线性振动系统,据此得到两自由度 Duffing?Van der Pol 振子的渐近解。通过与多尺度法、数值解结果对比,证明了使用复动频率法研究多自由度强非线性振动问题的有效性。

    Abstract:

    Bursting oscillation is a fast-slow dynamic phenomenon widely existing in nature. These years, it has been a hot topic on nonlinear dynamics. It usually appears as the transition between large and small oscillations due to bifurcation points or unstable lim it cycles. According to different dynamic mechanisms, bursting oscillation can be divided into various modes such as ‘point-point’mode and ‘point-ring’ mode. This paper focuses on a class of bistable composite laminates of nonlinear systems by parametric excitation and concerns the case where one parameter excitation frequency is an integer multiple of the other. The parameter excitation is regarded as a slow variable parameter, so the fast and slow subsystems of the multi-frequency parameter excitation system are obtained based on the fast-slow analysis method and the bifurcation behavior of the fast subsystem is analyzed. In the bifurcation analysis, the Hopf and fold bifurcation conditions of the fast subsystem with single mode and double mode bifurcation points are investigated. Exploiting double parameter bifurcation sets, phase portraits, time history curves and the overlap of transformed phase portraits with equilibrium branches, the mechanism and dynamic behavior of bursting oscillation with different parameters are studied.It is observed that the bursting oscillation phenomenon with different parameters may be independent of the pitchfork bifurcation points.

    参考文献
    相似文献
    引证文献
引用本文

张琪昌,杨 阳,王 炜,郝淑英.多维强非线性振动系统的复动频率法[J].振动工程学报,2023,36(3):606~611.[ZHANG Qi?chang, YANG Yang, WANG Wei, HAO Shu-ying. Complex dynamic frequency method for multidimensional strongly nonlinear vibration system[J]. Journal of Vibration Engineering,2023,36(3):606~611.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-26
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司