参数优化 VMD-MPE 和 PSO-CS-Elman 神经网络在滚动轴承故障诊断中的应用研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33

基金项目:

江苏省农业科技自主创新资金资助项目(CX(22)3101);江苏省自然科学基金资助项目(BK20210407);国家重点研发计划项目(2022YFD2001805)


Rolling bearing fault diagnosis based on parameter optimizedVMD-MPE and PSO-CS-Elman neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承振动信号的非线性、非平稳特征,提出了基于参数优化变分模态分解(Variational Mode Decomposition,VMD)、多尺度排列熵(Multi?scale Permutation Entropy,MPE)和粒子群?布谷鸟搜索融合算法优化 Elman神经网络的故障诊断方法。针对 VMD 中模态分量个数和惩罚因子难以确定的问题,引入鲸鱼优化算法,令其自主搜寻最优解;利用获得最优参数的 VMD 对滚动轴承故障仿真信号进行分解,对最佳模态分量进行包络谱分析,对比仿真故障频率与实际值的吻合度,验证该方法的可行性。考虑到 MPE 具有可探究信号内动力突变的优点,将其与参数优化 VMD 相结合,求取滚动轴承振动信号各阶模态分量的 MPE 值,选择部分熵值构建特征向量,并将其投放在三维空间观察其差异性,判断其是否能够良好地表征不同故障类型。针对 Elman 神经网络识别精度低的问题,将粒子群优化(Particle Swarm Optimization,PSO)算法和布谷鸟搜索(Cuckoo Search,CS)算法相融合,以此联合优化 Elman 网络的权重和阈值,以提升网络的收敛精度和诊断精度。以实验采集和凯斯西储大学的滚动轴承振动信号为研究对象,应用所提方法进行分析。结果表明,所提方法不仅能够自适应地将信号分解,并提取出有效的故障特征,还能准确实现故障模式的分类,提高故障识别率。

    Abstract:

    Aiming at the nonlinear and non-stationary characteristics of rolling bearing vibration signals, a fault diagnosis method based on parameter optimization variational modal decomposition (VMD), multi-scale permutation entropy (MPE) and particle swarm-cuckoo search fusion algorithm optimized Elman neural network is proposed. Aiming at the problem that the number of modal components and the penalty factor are difficult to determine in VMD, the whale optimization algorithm is introduced to make it autonomously search for the optimal solution. The VMD with the optimal parameters is used to decompose the simulation signal of the rolling bearing fault, and the envelope spectrum analysis of the optimum modal component is carried out, and then the coincidence degree of the simulated fault frequency with the actual value is compared to verify the feasibility of the method. Considering that MPE has the advantage of being able to explore dynamic changes in the signal, it is combined with parameter optimization VMD to obtain the MPE value of each modal component of the rolling bearing vibration signal. Part of the entropy value is selected to construct the feature vector and put in the three-dimensional space to observe its difference, so that it can well characterize different fault types. Aiming at the problem of low recognition accuracy of the Elman neural network, the particle swarm optimization (PSO) algorithm and the cuckoo search (CS) algorithm are combined to jointly optimize the weights and thresholds of the Elman network to improve the convergence accuracy and diagnosis accuracy of the network. The experimental collection and Case Western Reserve University's rolling bearing vibration signals are observed as the research objects, and the proposed method is used for analysis. The results show that the proposed method can not only decompose the signal adaptively and extract effective fault features, but also accurately realize the classification and recognition of fault modes, and the fault recognition rate is improved.

    参考文献
    相似文献
    引证文献
引用本文

肖茂华,周 爽,黄天逸,赵远方,费秀国.参数优化 VMD-MPE 和 PSO-CS-Elman 神经网络在滚动轴承故障诊断中的应用研究[J].振动工程学报,2023,36(3):861~874.[XIAO Mao-hua, ZHOU Shuang, HUANG Tian-yi, HAO Yuan-fang, FEI Xiu-guo. Rolling bearing fault diagnosis based on parameter optimizedVMD-MPE and PSO-CS-Elman neural network[J]. Journal of Vibration Engineering,2023,36(3):861~874.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-26
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司