用于直升机舱内降噪的智能周期撑杆研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V275+.1;TB535

基金项目:

直升机旋翼动力学国家级重点实验室基金资助项目(61422200402162220003);江苏高校优势学科建设工程资助项目


A smart periodic strut for helicopter cabin noise reduction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    直升机主减速器内的齿轮啮合引起的中高频振动是直升机舱内噪声的主要来源之一,通过设计具有隔振性能的减速器撑杆可以有效抑制传递到机体的振动,进而减小齿轮啮合诱发的舱内噪声。基于压电叠堆/橡胶周期结构,提出了一种适用于直升机舱内降噪的主动/被动混合振动控制的智能周期撑杆,在满足强度与刚度要求的同时,具有优良的多频与宽频减振能力。压电叠堆与橡胶材料周期排列组成周期结构,其在特定频率范围内具有“机械滤波”特性;同时,通过调节驱动压电叠堆的电压与电流,改变压电叠堆的动刚度,可实现主动减振的功能。为了对智能周期撑杆的主动/被动混合振动控制性能进行分析,建立了基于传递矩阵形式的智能周期撑杆的机电耦合动力学模型,并使用多物理场仿真软件验证了模型的正确性。进一步基于该模型分析了在驱动电压与电流有限的条件下的智能周期撑杆的最优隔振性能:在智能周期撑杆一端固支、一端受到 10 N 的激振力时,最大驱动电压为 20 V、最大驱动电流为 1 A 的电学边界限制下,该智能周期撑杆具有将 692 Hz以上的振动完全衰减的能力,对 692 Hz以下的振动有一定程度的控制效果。此外,还研究了材料参数与力学边界条件对主动控制的影响,即橡胶材料的阻尼、激振力对进行主动控制时需要的驱动电压与电流的影响。使用有限元模型校核了智能周期撑杆的强度与刚度,验证了所提出的智能周期撑杆方案的工程可行性。使用压电叠堆作动器与聚酯乙烯杆件组成一个三周期的压电叠堆周期撑杆作为智能周期撑杆的简化模型,验证了主动/被动混合振动控制性能,分析了力学边界条件对隔振性能的影响,以及进行主动控制时的驱动电压和电流与最优驱动电压和电流的关系。

    Abstract:

    The medium and high frequency vibration caused by the meshing of the gear in the helicopter's main reducer is one of the main sources of noise in the helicopter cabin. The vibration transmitted to the body can be suppressed effectively by designing a reducer strut with vibration isolation performance, and then the cabin noise induced by gear meshing can be reduced. In this paper,based on the piezoelectric stack/rubber periodic structure, a kind of smart periodic strut for active/passive hybrid vibration control is proposed for helicopter cabin noise reduction. It not only meets the requirements of strength and stiffness, but also has excellent multi-frequency and broadband damping capacity. The piezoelectric stack and the rubber material are arranged periodically to form a periodic structure, which has the characteristic of "mechanical filter" in a specific frequency range. At the same time, by adjusting the driving voltage and current of the piezoelectric stack and changing the dynamic stiffness of the piezoelectric stack, the function of active vibration reduction can be realized. In order to analyze the performance of active/passive hybrid vibration control of smart periodic strut, the electromechanical coupling dynamics model of smart periodic strut based on transfer matrix is established, and the correctness of the model is verified by multi-physical field simulation software. Based on this model, the optimal vibration isolation performance of smart periodic strut with limited driving voltage and current is analyzed. Under the condition that one end of the smart periodic strut is fixed, one end is subjected to 10N excitation force, the maximum driving voltage is 20V, and the maximum driving current is 1A, the smart periodic strut has the ability to completely attenuate the vibration above 692Hz, and can control the vibration below 692Hz to a certain extent. In addition, the influence of material and mechanical boundary conditions on active control is also studied, especially the influence of damping and excitation force of rubber material on driving voltage and current required for active control. The strength and stiffness of the smart periodic strut are verified by the finite element model, and the engineering feasibility of the intelligent periodic struts proposed in this paper is verified. A piezoelectric stack periodic strut with 3 cells is composed of the piezoelectric stack actuator and the PVC strut as a simplified model of the smart periodic strut. The control performance of active and passive hybrid vibration control, the influence of mechanical boundary conditions on vibration isolation performance, and the relationship between the driving voltage and current and optimal driving voltage and current are analyzed.

    参考文献
    相似文献
    引证文献
引用本文

岳慧裕,陆 洋,朱天宇,党 崇,李程磊.用于直升机舱内降噪的智能周期撑杆研究[J].振动工程学报,2023,36(5):1335~1348.[YUE Hui-yu, LU Yang, ZHU Tian-yu, DANG Chong, LI Cheng-lei. A smart periodic strut for helicopter cabin noise reduction[J]. Journal of Vibration Engineering,2023,36(5):1335~1348.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-23
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司