基于门控循环单元神经网络的大跨径斜拉桥索力预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U448.27

基金项目:

国家自然科学基金资助项目(52178276);福建省自然科学基金资助项目(2021J01601);福州市科技计划项目(2021?Y?084)


Cable force prediction of long‑span cable‑stayed bridge based on gated recurrent unit neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    拉索索力的改变直接反映斜拉桥结构体系受力状态的变化,因此索力监测对斜拉桥健康评估具有重要意义。然而现有关于索力的研究大多为索力识别,难以做到根据历史索力数据实现对未来索力的预测。为此,提出一种基于门控循环单元(GRU)神经网络的索力预测方法:利用 GRU 神经网络对时序型数据的处理能力以及索力数据较强的序列化特性,搭建基于 GRU 神经网络的索力预测框架,该预测框架包含输入层、GRU 隐藏层与输出层;利用实桥连续采集的索应力时程数据作为训练及验证样本,对样本进行数据切片和归一化;搭建能够实现对该桥未来索力进行预测的 GRU 神经网络,结合梯度下降优化算法进行网络计算。结果表明所提方法对不同长度的拉索都具有较好的预测效果。

    Abstract:

    The variations of cable forces directly reflect the internal mechanical states of a cable-tayed bridge. Therefore, the monitoring of stayed cables is important for health evaluation of the cable-stayed bridge. However, most of the existing research on stayed cables focuses on force identification. The prediction of future forces based on the historical data is still difficult to achieve.Therefore, this study proposes a cable force prediction method using the gated recurrent unit (GRU) neural network. The application framework based on the GRU neural network is established by using the processing ability of the GRU neural network to time series data, taking into account the strong serialization characteristics of cable force data. The network construction includes the input layer, the GRU hidden layer and the output layer. The cable stress time history data of a real-world cable-stayed bridge is collected as the training and validation samples for the GRU neural network. Data slices and normalization are applied to the sampling process. The GRU neural network is successfully established to predict future cable force of this bridge. The Network calculation is performed using a gradient descent optimization algorithm. The analysis results show that the proposed method can provide satisfactory predictions for cables of different lengths.

    参考文献
    相似文献
    引证文献
引用本文

郭新宇,方圣恩.基于门控循环单元神经网络的大跨径斜拉桥索力预测[J].振动工程学报,2023,36(6):1480~1484.[GUO Xin?yu, FANG Sheng?en. Cable force prediction of long‑span cable‑stayed bridge based on gated recurrent unit neural network[J]. Journal of Vibration Engineering,2023,36(6):1480~1484.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-02
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司