联合频域相关分析和改进粒子滤波的滚动轴承 寿命预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TB114.33;TH133.33

基金项目:

国家自然科学基金资助项目(52075182);广州市科技计划基础与应用基础研究项目(202102020602);广东省 自然科学基金资助项目(2020A1515010972,2020A1515010750)


A remaining life prediction method for rolling bearing based on frequency domain correlation analysis and improved particle filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决滚动轴承退化状态识别难、剩余使用寿命(Remaining Useful Life, RUL)预测误差大这两个关键问 题,提出一种联合频域特征相关分析及改进粒子滤波的寿命预测方法。基于滚动轴承在退化过程中频域特征存在 短期相似性和长期差异性这一特点,对不同时间序列傅里叶变换后的幅值谱进行相关分析,构建平均相关系数 (Average Correlation Coefficient, ACC)曲 线 。 当 ACC 达 到 设 定 阈 值 时 ,利 用 初 始 故 障 时 间(Degradation Initial Timepoint, DIT)将轴承状态划分为正常和损伤两阶段。利用损伤阶段的归一均方根值作为观测样本输入,构建考 虑了全局指数式退化趋势与局部波动双重因素的粒子滤波(Dual Factor Particle Filter, DFPF)模型,实现粒子分布 校正并完成 RUL 预测。试验结果表明,所提方法相比传统的均方根值法和峭度法能够更准确地识别轴承初始故障 时间。在寿命预测精度方面,相比传统粒子滤波(Particle Filter, PF)算法,所提方法减小了异常观测值对预测趋势 的影响,具有更高的 RUL 预测精度。

    Abstract:

    Aiming at two key problems of the difficulty in identifying the degraded state and the large remaining useful life (RUL) prediction error of rolling bearings, a method combined frequency domain correlation analysis with improved particle filter is pro? posed to address these problems. Based on the characteristic of short-term similarity and long-term difference of bearing vibration signal in frequency domain during the degradation process, the average correlation coefficient (ACC) curve is constructed by the correlation analysis of the amplitude spectrum in frequency domain. When the ACC reaches the preset threshold, the initial failure time (Degradation Initial Timepoint, DIT) is utilized to divide the bearing state into normal and damage stages. Then, the root mean square (RMS) values of vibration signals in damage stage is adopted as the input of observation samples. The dual factor par? ticle filter (DFPF) model, which considers both global exponential degradation tendency and local fluctuation of the measure? ments, is constructed to correct the particle distribution and predict RUL of bearings. The experimental results show that the pro? posed method can effectively identify the accurate initial failure time of bearings than traditional RMS and kurtosis method. More? over, compared with the conventional particle filter (PF) algorithm, the proposed method reduces the interference of abnormal ob? servations on the prediction trend and has higher RUL prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

梁洁琳,丁 康,何国林,林慧斌,蒋 飞.联合频域相关分析和改进粒子滤波的滚动轴承 寿命预测方法[J].振动工程学报,2023,36(6):1736~1743.[LIANG Jie-lin, DING Kang, HE Guo-lin, LIN Hui-bin, JIANG Fei. A remaining life prediction method for rolling bearing based on frequency domain correlation analysis and improved particle filter[J]. Journal of Vibration Engineering,2023,36(6):1736~1743.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-02
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司