GhostConv 轻量级网络设计及故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33

基金项目:

国家重点研发计划资助项目(2020YFB2007700);国家自然科学基金资助项目(11972236,11790282);石家庄铁道大学研究生创新资助项目(YC2022059)


GhostConv lightweight network design and research on fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种 GhostConv 轻量级网络模型并将其用于故障诊断。GhostConv 利用常规卷积生成一小部分特征图, 然后在生成的特征图上进行多次特征提取来生成其余特征图,最大程度地节约了常规卷积中生成冗余特征图的成 本,减少了模型参数,保证了模型的性能。采用连续小波变换对振动信号进行时频变换生成二维时频图,之后利用 设计的 GhostConv 搭建轻量级网络模型进行故障诊断。采用凯斯西储大学轴承数据集进行验证,并与其他卷积结 构网络模型进行参数量、计算量以及识别准确率的对比。实验结果表明,与其他模型相比,所使用的网络模型在参 数量和计算量较少的条件下依旧有较高的识别精度,且具有较好的鲁棒性和泛化能力,具有一定的工程应用价值。

    Abstract:

    With the advent of the era of big data, the mechanical equipment fault diagnosis method based on deep learning has at? tracted more attention. However, the traditional deep network model seriously limits its application in practical engineering due to the excessive amount of parameters and calculations. Based on this, a GhostConv lightweight network model is proposed and used for fault diagnosis. GhostConv generates a small part of the feature maps through conventional convolution, and performs multiple feature extraction on the generated feature maps to generate the remaining feature maps. Contact the feature maps of the two parts to obtain a complete feature map. GhostConv structure saves the cost of generating redundant feature maps in conventional convolu? tion to the maximum extent, and reduces the model parameters to ensure the performance of the model. In the experiment, the con? tinuous wavelet transform is used to transform the vibration signal to generate a two-dimensional time-frequency diagram, and then the designed GhostConv is used to establish a lightweight fault diagnosis network model. The original dataset and noisy dataset of Case Western Reserve University are used for experimental verification, and compared with the conventional convolution structure network model and depth separable convolution structure model in terms of parameters, calculation and recognition rate. The ex? perimental results show that the GhostConv lightweight network model still has high recognition accuracy and strong anti-noise abil? ity under the condition of fewer parameters and calculations with good robustness and generalization ability. The parameters of the model are only 6% of the conventional convolution model and 56% of the deep separable convolution model. Under the condition of strong noise interference, the fault diagnosis and recognition rate is still higher than that of the conventional convolution model, which confirms its engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

赵志宏,李春秀,杨绍普. GhostConv 轻量级网络设计及故障诊断研究[J].振动工程学报,2024,37(1):182~190.[ZHAO Zhi-hong, LI Chun-xiu, YANG Shao-pu. GhostConv lightweight network design and research on fault diagnosis[J]. Journal of Vibration Engineering,2024,37(1):182~190.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司