平均降采样多周期微分均值的旋转部件 故障特征增强方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.3

基金项目:

国家自然科学基金资助项目(52165067);云南科技计划重大专项项目(202002AC080001)


Fault feature enhancement method of rotating parts based on average down‑sampling multi-period differential mean
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决编码器的瞬时角速度(Instantaneous Angular Speed, IAS)信号中旋转部件故障特征微弱的难题,本文 提出一种平均降采样多周期微分均值(Average Down?Sampling Multi?period Differential Means,ADSMPDM)的故 障特征增强方法。基于 IAS 信号的估计特性,开展了 IAS 信号的平均降采样研究,验证了平均降采样具有抑制随机 噪声的特性;基于平均降采样抑制随机噪声特性、降低计算成本和减小存储空间的优势,结合多周期微分均值的累 积特性,提出一种 ADSMPDM 算法对原始 IAS 信号中的旋转部件故障分量进行增强处理;通过阶次谱分析揭示故 障特征。采用仿真数据和实验数据进行验证分析,并与快速谱峭度、可调整多点优化最小熵反卷积、离散随机分离 和谱幅值调制算法进行对比,验证了 ADSMPDM 算法增强旋转部件故障特征的有效性和优势。

    Abstract:

    To address the issue of weak features related to faulty rotating parts in Instantaneous Angular Speed(IAS) signal, this study proposes a Average Down-Sampling Multi-Period Differential Means(ADSMPDM) scheme to enhance fault features. First? ly, based on the estimation characteristics of the IAS, the average down-sampling of the IAS signal is studied and its features of suppressing random noise are obtained. Secondly, the ADSMPDM scheme is proposed to enhance the features related to the fault in the IAS signal based on the advantages of the average down-sampling (such as noise suppression, low computational cost and low storage space) and accumulative characteristic of multi-period differential means. Finally, the features related to the fault are re? vealed by order spectrum analysis. By using Simulations and experiments and comparing with fast kurtogram, multipoint optimal minimum entropy deconvolution adjusted, discrete random separation and spectral amplitude modulation, the effectiveness and ad? vantages of the ADSMPDM algorithm in enhancing gear and bearing fault feature components are verified.

    参考文献
    相似文献
    引证文献
引用本文

陈 鑫,郭 瑜.平均降采样多周期微分均值的旋转部件 故障特征增强方法[J].振动工程学报,2024,37(2):346~355.[CHEN Xin, GUO Yu. Fault feature enhancement method of rotating parts based on average down‑sampling multi-period differential mean[J]. Journal of Vibration Engineering,2024,37(2):346~355.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-14
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司