基于改进残差网络的风电轴承故障迁移诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TP183

基金项目:

国家自然科学基金资助项目(62241308);甘肃省技术创新引导计划-科技专员专项资助项目(22CX8GA130)


A fault transfer diagnosis method for wind turbine bearings based on improved residual neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电轴承故障源域数据和目标域数据特征分布不同而导致的故障诊断精度偏低问题,提出一种利用改 进残差神经网络进行风电轴承故障迁移诊断的方法。该方法将卷积核和池化核设定为与一维振动信号卷积运算相 适应的尺寸,从振动信号直接提取轴承的故障特征;在一维残差网络中同时使用批量归一化和实例归一化,进一步 增强模型的特征提取能力;在模型训练阶段,通过源域数据和目标域数据的多核最大均值差异构建新的损失函数, 以提高模型在不同分布数据集上的迁移学习及分类能力。利用故障轴承实验数据对方法的有效性进行验证,结果 显示,即使受到轴承变转速运行工况和故障振动信号含噪声干扰成分的双重影响,该方法仍然可提取出轴承故障的 重要特征,并实现不同工况轴承故障的迁移诊断和准确分类,这对于发展复杂环境下的旋转机械智能故障诊断技术 具有参考价值。

    Abstract:

    To address the low accuracy in diagnosing faults in wind turbine bearings caused by the different characteristic distribu? tion of the source domain data and the target domain data, a fault transfer diagnosis method using improved residual neural net? works is proposed. The convolution kernel and pooling kernel are set to a size suitable for the convolution operation of one-dimen? sional signals, allowing for direct extraction of fault features from the bearing vibration signals; Both batch normalization and case normalization are used in the one-dimensional residual network to further enhance the feature extraction ability of the model; In the model training stage, a new loss function is constructed based on the multiple kernel maximum mean discrepancy between the source domain data and the target domain data to improve the transfer learning and classification ability of the model. The effective? ness of the method is verified by conducting the experimental data of the faulty bearings. The results show that the proposed meth? od can effectively extract the important features of bearing faults and achieve the transfer diagnosis and accurate classification of the bearing faults. This holds true even under varying speed operation conditions and when the bearing fault vibration signals are dis? turbed by some noise components. Therefore, this work provides a useful strategy in developing intelligent fault diagnosis technolo? gy of rotating machinery under complex working conditions.

    参考文献
    相似文献
    引证文献
引用本文

邓林峰,王 琦,郑玉巧.基于改进残差网络的风电轴承故障迁移诊断方法[J].振动工程学报,2024,37(2):356~364.[DENG Lin-feng, WANG Qi, ZHENG Yu-qiao. A fault transfer diagnosis method for wind turbine bearings based on improved residual neural networks[J]. Journal of Vibration Engineering,2024,37(2):356~364.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-14
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司