超磁致伸缩致动器非线性动力学的分数阶时滞 反馈控制
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O322;TB381

基金项目:

内蒙古自然科学基金资助项目(2020LH05023)


Fractional‑order time‑delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设计了一种分数阶时滞反馈控制器,用于控制单自由度的超磁致伸缩致动器(GMA)的非线性动态响应。考 虑到预压碟形弹簧机构引入的几何非线性因素影响,建立了 GMA 系统的非线性数学模型。利用平均法求解系统 在含分数阶时滞反馈控制策略下主共振的幅频响应方程,根据 Routh?Hurwitz 准则得到系统的稳定性条件。通过数 值模拟研究 GMA 系统中关键结构参数对幅频响应特性的影响,以及主共振峰值和系统稳定性随每个时滞反馈参 数变化的特性规律;通过分岔图和 Lyapunov 指数图得到外激励幅值对系统混沌运动的影响;最后调节时滞反馈增 益和分数阶次抑制系统的混沌运动。结果表明,时滞反馈增益和分数阶次能够有效抑制系统的主共振峰值和不稳 定区域,可以将系统响应从混沌运动调整为稳定的周期运动,提高系统的稳定性。

    Abstract:

    In this paper, a fractional-order time-delayed feedback controller is designed to control the nonlinear dynamic response of a single-degree-of-freedom giant magnetostrictive actuator (GMA). Considering the effect of geometric nonlinear factors intro? duced by the preloaded disc spring mechanism, a nonlinear mathematical model of the GMA system is established. The amplitudefrequency response equation of the main resonance of the system under the feedback control strategy with fractional-order time-de? layed is obtained by the averaging method, and the stability condition of the system is obtained according to the Routh-Hurwitz cri? terion. The influence of key structural parameters in the GMA system on the amplitude-frequency response characteristics, as well as the characteristic law of the main resonance peak and system stability with each time-delayed feedback parameter are studied through numerical simulation. The bifurcation diagram and Lyapunov exponent diagram are obtained and the influence of the exter? nal excitation amplitude on the chaotic motion of the system is studied; finally, the time-delayed feedback gain and fractional order are used to suppress the chaotic motion of the system. The results show that the time-delayed feedback gain and fractional order can effectively suppress the main resonance peak and unstable region of the system, and the system response can be adjusted from cha? otic motion to stable periodic movement to improve the stability of the system.

    参考文献
    相似文献
    引证文献
引用本文

闫洪波,付 鑫,汪建新,于均成,马庆振,杨伯军.超磁致伸缩致动器非线性动力学的分数阶时滞 反馈控制[J].振动工程学报,2024,37(4):632~644.[YAN Hong?bo, FU Xin, WANG Jian?xin, YU Jun?cheng, MA Qing?zhen, YANG Bo?jun. Fractional‑order time‑delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator[J]. Journal of Vibration Engineering,2024,37(4):632~644.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-20
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司