基于深度张量投影网络的机械故障诊断方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TP183

基金项目:

国家自然科学基金资助项目(52075236);江西省自然科学基金重点项目资助项目(20212ACB202005)


Mechanical fault diagnosis method based on Deep TensorProjection Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的、基于深度卷积神经网络的故障诊断方法利用池化层对高阶输入张量降维时容易破坏张量数据, 造成数据信息丢失,以及网络结构相对复杂的不足,构造了一种深度张量投影网络。该网络利用张量投影层代替传 统卷积神经网络中的池化层,在对输入的高阶张量数据进行降维时,不会对张量数据造成破坏,避免了特征信息的 丢失,提高了模型对故障的识别准确率;并且张量投影层是一种维度可变的降维层,可以简化网络结构。在此基础 上,结合高阶谱和深度张量投影网络各自的优点,提出了基于深度张量投影网络的机械故障诊断方法。在提出的方 法中,利用高阶谱提取故障信号特征,将得到的高阶张量谱图输入到构建的深度张量投影网络模型中进行高阶张量 降维和识别。提出的方法成功应用到齿轮箱故障诊断中。实验结果表明,所提方法能够更好地保留原始故障信息, 有效识别不同类型的故障,准确率优于传统深度卷积神经网络故障诊断方法。

    Abstract:

    The shortcomings of fault diagnosis methods based on deep convolutional neural networks is that, tensor data is easily destroyed when reducing the dimension of high-order input tensors by pooling layers, which results in a loss of data information, and the relatively complex network structure. Therefore, a Deep TensorProjection Networks method is constructed via replacing the pooling layer in the traditional CNN by a TensorProjection Layer. The TensorProjection Layer reduces the dimensionality of in‐ put high-order tensor data without causing damage to the data, thus avoiding the impact of the loss of feature information, and greatly improving the recognition accuracy of the model. The dimensionality of the TensorProjection Layer used for dimensionality reduction is variable, thus simplifying the networks structures. Based on this, combined with the respective advantages of high-or‐ der spectrum and deep TensorProjection networks, a mechanical fault diagnosis method based on deep TensorProjection networks is proposed. In the proposed method, the feature of fault signal is extracted by high-order tensor spectrum, which is input into the constructed model for reducing high-order tensor dimensionality and identifying faults. The proposed method is applied to diagnose gearbox faults. Experimental results show that the proposed method can better retain the original fault information and effectively recognize the different types of faults. And the accuracy is better than traditional deep convolutional neural network fault diagnosis methods

    参考文献
    相似文献
    引证文献
引用本文

黄文静,李志农,王发麟,陈亮亮,龙盛蓉.基于深度张量投影网络的机械故障诊断方法研究[J].振动工程学报,2024,37(4):657~666.[HUANG Wen?jing, LI Zhi?nong, WANG Fa?lin, CHEN Liang?liang, LONG Sheng?rong. Mechanical fault diagnosis method based on Deep TensorProjection Networks[J]. Journal of Vibration Engineering,2024,37(4):657~666.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-20
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司