非完备数据集下的标准自学习数据增强滚动轴承 故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33;TP206+.3

基金项目:

国家自然科学基金资助项目(52005300,52172406);山东省高等学校青创科技支持计划项目(2023KJ124); 中国博士后科学基金资助项目(2021M702752,2022T150552)


Standard self‑learned data augmentation for rolling bearing fault diagnosis using incomplete training dataset
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承的智能故障诊断是设备安全、高效运行的重要保障。然而,非平稳的运行工况使采集到的训练数据 集呈现不完备的特点,导致基于数据驱动的模型仅能从中学习到极为有限的诊断知识,致使诊断准确率大幅下降。 针对此问题,以生成扰动样本扩充原始数据集的完备性为目的,提出了标准自学习数据增强故障诊断方法。该方法 包含标准自学习和数据增强两个训练步骤,将一维卷积神经网络的训练过程看作模型自学习出评判扰动样本的标 准,基于此标准,采用样本参数化与模型数据化方法生成扰动样本。两步骤交叉进行,不仅能生成扰动数据、增强数 据集完备性,同时能获得非平稳工况下的故障诊断模型。此外,通过研究不同数据生成次序的样本差异,发现所提 方法在生成数据时,通过数据生成距离与方向的随机性叠加,保证了生成样本的多样性。实验结果表明所提方法在 不完备的训练数据集下对非平稳工况样本的诊断具有有效性和优越性。

    Abstract:

    Intelligent fault diagnosis of rolling bearings is important for guaranteeing the safe of equipment. However, the non-sta? tionary conditions lead to the incomplete collected training datasets, which makes the data-driven model learn the limited diagnostic knowledge. This declines the testing accuracy observably. To solve this problem, a Standard Self-Learned Data Augmentation (SSDA) fault diagnosis method is proposed, which can generate disturbed samples to expand the completeness of the original data? set. The method includes two training steps: standard self-learning and data augmentation. The training process of one-dimensional convolutional neural network is regarded as the self-learned standard of model to judge disturbed samples. Based on this standard, sample parameterization and model datalization are used to generate disturbed samples. By alternately carrying out the two steps, not only the disturbed data can be generated to augment the completeness, but also the fault diagnosis model under non-stationary conditions can be obtained. In addition, by studying the sample differences with different data generating number, it is found that the randomness of distance and direction is superimposed on the randomness of the proposed method to guaranteeing the diversity of the generated samples. Experimental results show that the proposed method is effective and advantageous in diagnosing bearing fault with incomplete training data sets under non-stationary conditions.

    参考文献
    相似文献
    引证文献
引用本文

安增辉,江星星,杨 蕊,赵 磊,朱忠奎,李舜酩.非完备数据集下的标准自学习数据增强滚动轴承 故障诊断方法[J].振动工程学报,2024,37(4):667~676.[AN Zeng-hui, JIANG Xing-xing, YANG Rui, ZHAO Lei, ZHU Zhong-kui, LI Shun-ming. Standard self‑learned data augmentation for rolling bearing fault diagnosis using incomplete training dataset[J]. Journal of Vibration Engineering,2024,37(4):667~676.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-20
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司