改进卷积胶囊网络的滚动轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3;TH133.33+1

基金项目:

国家自然科学基金资助项目(61763029,62163023);甘肃省科技计划资助项目(21YF5GA072);甘肃省教育厅 产业支撑计划项目(2021CYZC-02)


Improved convolutional capsule network method for rolling bearing fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前许多基于卷积网络的滚动轴承故障诊断方法受噪声信号以及负荷变化的影响,存在诊断效果不佳、泛化 能力差的问题。针对此问题提出一种改进卷积胶囊网络的滚动轴承变工况故障诊断方法。该方法设计了多尺度非 对称卷积模块,其中采用不同尺度的非对称卷积层对输入数据进行特征提取,在实现最大化提取数据中的特征信息 的同时,还能够有效减少参数量;在该模块中引入通道注意力机制,能更好地提取有用的通道特征,提高该方法特征 提取的能力;通过将网络中的全连接层改进为胶囊全连接层,使得胶囊在输出向量特征信息时,避免了特征信息在 空间中的丢失。使用凯斯西储大学轴承数据集和东南大学变速箱数据集来验证所提方法的诊断性能,并与其他深 度学习方法进行了比较。实验结果表明,与其他深度学习方法相比,具有较好的泛化性,效果更佳。

    Abstract:

    At present, many rolling bearing fault diagnosis methods based on convolutional networks have the disadvantages of poor diagnosis effect and poor generalization ability under the influence of noise signals and load variations. Aiming at these prob? lems, an improved convolutional capsule network fault diagnosis method of rolling bearing under variable operating conditions is proposed. This method designs a multi-scale asymmetric convolution module, in which asymmetric convolution layers of different scales to extract features from the input data to maximize the extraction of feature information in the data and reduce the number of parameters effectively. In this module, the channel attention mechanism is introduced to better extract useful channel features and improve the feature extraction ability of the method in this paper. By improving the fully connected layer in the network to the fully connected layer of the capsule, the capsule can avoid the loss of characteristic information in the space in the process of outputting vector feature information. Case Western Reserve University bearing dataset and Southeast University gearbox dataset are used to verify the diagnostic performance of the proposed method and compare with other deep learning methods. The experimental results show that the proposed method has a better generalization and performance.

    参考文献
    相似文献
    引证文献
引用本文

赵小强,柴靖轩.改进卷积胶囊网络的滚动轴承故障诊断方法[J].振动工程学报,2024,37(5):885~895.[ZHAO Xiao-qiang, CHAI Jing-xuan. Improved convolutional capsule network method for rolling bearing fault diagnosis[J]. Journal of Vibration Engineering,2024,37(5):885~895.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-06
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司