自复位支撑钢框架结构抗震性能试验与分析
CSTR:
作者:
作者单位:

北京交通大学土木建筑工程学院

中图分类号:

TU352.1

基金项目:

国家杰出青年科学基金,国家自然科学基金(青年科学基金项目)


Seismic behavior experiment and analysis of steel frame structure with self-centering braces
Fund Project:

The National Science Fund for Distinguished Young Scholars,The National Natural Science Foundation of China (Young Scientists Fund)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文对一个1/2缩尺3层单榀单跨的人字形自复位支撑钢框架结构进行了拟动力试验。通过数值模拟研究了自复位支撑与钢框架之间的配合公差以及自复位支撑的二次激活特性对结构地震响应的影响。试验结果表明:在多遇和设防地震作用下,钢框架保持弹性;在罕遇地震作用下,柱底翼缘屈服,最大残余层间位移角仅为0.135%,远小于不可修复限值0.5%;在极罕遇地震作用下,最大层间位移角为1.96%,小于倒塌限值2.0%。试验结束后,除框架柱底翼缘的漆皮出现明显剥落外,试验模型未出现其他损伤迹象。受配合公差影响,试验模型层间滞回响应的骨架曲线表现为三折线,层间剪力在正负方向上的值差异明显。2层南支撑的二次激活导致第2层刚度在层间位移接近-10 mm时先降后升。模拟结果表明:配合公差导致结构在不同水准地震作用下层间位移角和楼层加速度均放大。支撑二次激活降低了无配合公差的结构在设防地震下的层间位移角,增大了结构在罕遇和极罕遇地震下最大楼层加速度。配合公差和支撑二次激活对结构可修复性能没有影响。

    Abstract:

    This paper conducted pseudodynamic tests on a 1/2 scaled, three-story, one-bay steel frame with self-centering chevron braces. Numerical simulations were carried out to investigate the influences of fit tolerances between self-centering braces and the steel frame as well as the reactivation behavior of the self-centering braces on the seismic performance of the test frame. The test results indicated that the steel frame was in an elastic state under frequent level and design basis earthquakes. Under rare level earthquakes, the flanges of column bases yielded; the maximum residual story drift ratio was only 0.135%, well below 0.5% threshold for the irreparability. Under very rare earthquakes, the maximum story drift ratio was only 1.96%, less than the collapse limit of 2.0%. After all tests, there was no evidence of damage to test frame other than obvious peeling of the spray paint on the flanges of column bases. Due to the fit tolerances, the skeleton curve of interstory hysteretic responses of the test model exhibited a trilinear pattern, and the story shear force in positive direction was significantly different from that in negative direction. The reactivation behavior of the south brace in Story 2 caused the stiffness of Story 2 to firstly decreased and then increased when the story drift approached -10 mm. The simulation results showed that the fit tolerances led to an amplification of story drift ratio and floor acceleration under different level earthquakes. For structures without fit tolerances, the reactivation behavior of braces reduced story drift ratios under design basis earthquakes and increased maximum floor acceleration under rare and very rare earthquakes. Fit tolerances and reactivation behavior of braces had no effect on the repairability of the structure.

    参考文献
    [1] VERDE Roberto Villa. Explanation for the numerous upper floor collapses during the 1985 Mexico City earthquake[J]. Earthquake Engineering Structural Dynamics, 1991, 20(3): 223-241.
    [2] RAMIREZ C Marcelo, Miranda Eduardo. Significance of residual drifts in building earthquake loss estimation[J]. Earthquake Engineering Structural Dynamics, 2012, 41(11): 1477-1493.
    [3] BRADLEY Brendon A, CURBINOVSKI Misko. Near-source strong ground motions observed in the 22 February 2011 Christchurch earthquake[J]. Seismological Research Letters, 2011, 82(6): 853–865.
    [4] EROCHKO Jeffrey, CHRISTOPOULOS Constantin, TREMBLAY Robert, et al. Shake table testing and numerical simulation of a self-centering energy dissipative braced frame[J]. Earthquake Engineering Structural Dynamics, 2013, 42(11): 1617-1635.
    [5] QIU Canxing, ZHU Songye. Shake table test and numerical study of self‐centering steel frame with SMA braces[J]. Earthquake Engineering Structural Dynamics, 2017, 46(1): 117-137.
    [6] ZHU Ruizhao, GUO Tong, TESFAMARIAM Solomon, et al. Shake-table tests and numerical analysis of steel frames with self-centering viscous-hysteretic devices under the mainshock–aftershock sequences[J]. Journal of Structural Engineering, 2022, 148(4): 04022024.
    [7] SONG Zhaoyang, ZHOU Ying, LU Yiqiu. Shaking table test of a 10‐story self‐centering tube building[J]. Earthquake Engineering Structural Dynamics, 2023, 52(5): 1511-1535.
    [8] XIAO Shuijing, XU Longhe, FENG Peng. Post-earthquake performance and damage evaluation of self-centering shear wall with replaceable devices[J]. Engineering Structures, 2023, 289: 116248.
    [9] LU Xiao, XU Hang, ZHANG Xuemin, et al. Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints[J]. Engineering Structures, 2023, 285: 116062.
    [10] ZHANG Ge, XU Longhe, LI Zhongxian. Development and experimental verification of self-centering haunched plug-in modular connections[J]. Journal of Structural Engineering, 2023, 149(5): 04023047.
    [11] 周颖, 申杰豪, 肖意. 自复位耗能支撑研究综述与展望[J]. 建筑结构学报, 2021, 42(10): 1-13.ZHOU Yin, SHEN Jiehao, Xiao Yi. State-of-the-art on self-centering energy dissipative braces[J]. Journal of Building Structures, 2021, 42(10): 1-13.
    [12] 孙天威, 彭凌云, 李小军, 等. 半周负刚度摩擦阻尼装置振动台试验研究[J]. 振动工程学报, 2024, 37(03): 423-435.SUN Tianwei, PENG Lingyun, LI Xiaojun, et al. Shaking table test of a half?cycle negative stiffness friction damping device[J]. Journal of Vibration Engineering, 2024, 37(03): 423-435.
    [13] 刘延芳, 张文学, 杜修力, 等. 连续梁桥质量转动缠绕索装置振动台试验[J]. 振动工程学报, 2024, 37(04): 548-555.LIU Yanfang, ZHANG Wenxue, DU Xiuli, et al. Shaking table tests on mass rotation wrap rope device for continuous girder bridges[J]. Journal of Vibration Engineering, 2024, 37(04): 548-555.
    [14] 谭晓晶, 吴斌, 王贞. 采用力控制加载的拟动力试验等效力控制方法[J]. 振动工程学报, 2013, 26(03): 451-458.TAN Xiaojing, WU Bin, WANG Zhen. Pseudo-dynamic tests with effective force control method based on force-loading control strategy[J]. Journal of Vibration Engineering, 2013, 26(03): 451-458.
    [15] 李腾飞, 苏明周, 隋龑, 等. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108.LI Tengfei, SU Mingzhou, SUI Yan, et al. Hybrid test on the seismic behavior of high strength steel composite K-eccentrically braced steel frames[J]. Engineering Mechanics, 2019, 36(4): 100-108.
    [16] CHEN Peng, XU Longhe, XIE Xingsi. Enhanced design and experimental investigation of disc spring-based self-centering buckling-restrained braces with a compounded combination mode[J]. Earthquake Engineering Structural Dynamics, 2023, 52(10): 3053-3073.
    [17] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(3): 122-130.ZHOU Ying, GU Anqi. Displacement based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40(3): 122-130.
    [18] 中华人民共和国住房和城乡建筑部. 建筑抗震设计规范:GB 50011?2010[S]. 北京: 中国建筑工业出版社, 2010.MOHURD. Code for seismic design of buildings: GB 50011?2010[S]. Beijing: China Architecture Building Press, 2010.
    [19] XU Longhe, FAN Xiaowei, LI Zhongxian. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127: 49-61.
    [20] JIANG Hao, XU Longhe, XIE Xingsi, et al. Seismic behavior of double activation self-centering brace and braced structures[J]. Journal of Structural Engineering, 2023, 149(7): 04023082.
    [21] ANCHETA Timothy D, DARRAGH Robert B, STEWART Jonathan P, et al. NGA-West2 database[J]. Earthquake Spectra. 2014, 30(3): 989-1005.
    [22] Mccormick Jason, ABURANO Hiroshi, IKENAGA Masahiro, et al. Permissible residual deformation levels for building structures considering both safety and human elements[C]. Proceeding of World Conference on Earthquake Engineering. Beijing, 2008: 1-8.
    [23] FANG Cheng, PING Yiwei, CHEN Yiyi. Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames[J]. Earthquake Engineering Structural Dynamics, 2020, 49(2): 155-174.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:123
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-21
  • 最后修改日期:2024-09-03
  • 录用日期:2024-09-04
文章二维码
您是第3197816位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!