融合注意力机制和 Bi‑LSTM 网络的车辆辅助 桥梁损伤评估
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金资助项目(2242024K40013);东南大学新进教师科研启动经费资助项目 (RF1028623149);中国国家铁路集团有限公司科技研究开发计划资助项目(P2022G054)


Vehicle‑assisted bridge damage assessment by combining attention mechanism and Bi‑LSTM network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于车辆辅助的桥梁损伤识别具有巨大应用潜力,但仍难以从多源监测数据中提取损伤敏感特征,进而准确 评估桥梁损伤状态。为此,提出了基于长短时记忆网络的注意力加权特征融合模型(ALFF‐Net)。该模型通过预 置数据重构层,提高了 Bi‐LSTM 单元对时间序列多尺度特征信息的感知能力。同时结合注意力机制和特征融合策 略,降低了深度神经网络下游分支的预测难度,进一步提升了模型对序列数据重要依赖关系的建模能力。通过 车‐桥耦合仿真生成了不同路面不平整度和车速下的监测数据集,对 ALFF‐Net 模型的桥梁损伤识别性能进行综合 测试。结果表明:ALFF‐Net 模型较经典 LSTM 网络在显著降低计算成本的同时,损伤识别准确率最高可提升 19.30%,且各级路面不平整度下的识别误差均小于 3%。进一步地,通过对比 ALFF‐Net 模型在不同监测数据驱动 方案下的识别精度,验证了协同多源监测数据的桥梁结构损伤检测结果更为鲁棒。

    Abstract:

    Vehicle-assisted bridge damage identification has great application potential, but it is still difficult to extract damage-sen‐ sitive features from multi-source monitoring data and accurately evaluate the bridge damage status. To solve this problem, an At‐ tention-LSTM-based Feature Fusion Model (ALFF-Net) is proposed. The model improves the perception ability of Bi-LSTM cells for multi-scale feature information in time series data through a preset data reconstruction layer. Furthermore, by employing attention mechanism and feature fusion strategy, the model reduces the prediction difficulty of downstream branches of deep neural networks and further improves the modeling ability for the important dependency relationships in the sequence data. A monitoring dataset under different road roughness and vehicle speeds is generated through a vehicle-bridge interaction system simulation, and the bridge damage identification performance of the ALFF-Net model is comprehensively tested. The results show that the ALFF-Net model improves the damage identification accuracy by up to 19.30% compared to the classical LSTM network while signifi‐ cantly reducing computational costs, and the identification errors under different road roughness levels are less than 3%. More‐ over, by comparing the identification accuracy of the ALFF-Net model under different data-driven schemes, the robustness of the bridge damage detection results with synergistic multi-source monitoring data is verified.

    参考文献
    相似文献
    引证文献
引用本文

曾 琰,冯东明,黎剑安.融合注意力机制和 Bi‑LSTM 网络的车辆辅助 桥梁损伤评估[J].振动工程学报,2024,37(7):1089~1097.[ZENG Yan, FENG Dong?ming, LI Jian?an. Vehicle‑assisted bridge damage assessment by combining attention mechanism and Bi‑LSTM network[J]. Journal of Vibration Engineering,2024,37(7):1089~1097.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-06
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司