联合激励下分数阶非线性系统非平稳响应的 半解析方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O324;O322

基金项目:

国家自然科学基金面上项目(52078399);中央高校基本科研业务费专项资金项目(JZ2023HGTA0194)


A semi‑analytical method for non‑stationary response determination of nonlinear systems subjected to combined excitation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    确定性和随机激励联合作用下的非线性动力系统具有特殊的动力响应特征。本文提出一种用于计算联合激 励下含分数阶阻尼的非线性系统非平稳响应的半解析方法。将系统响应表示为确定性响应和零均值随机响应之 和,则原分数阶非线性运动微分方程可等效地化为分数阶确定性微分方程和随机子微分方程的组合。利用时变谐 波平衡法处理非线性确定性微分方程,利用统计线性化处理非线性随机子微分方程。对于后者,结合 Prony?SS 算 法和 Laplace 变换得到其分数阶等效线性方程的半解析解。联立得到的相关耦合方程,通过数值算法迭代求解响应 未知量。蒙特卡罗模拟验证了此方法的适用性和精度。

    Abstract:

    The nonlinear dynamic systems exhibit particular behaviors when subjected to combined deterministic and stochastic ex? citation. A semi-analytical method for calculating the nonstationary response of a fractional nonlinear oscillator subjected to com ? bined excitation is proposed. Representing the system response as a sum of a deterministic component and zero-mean stochastic component leads to two equivalent sub-equations for the differential equation of motion. The time-varying harmonic balance meth? od is used for the nonstationary solution of the deterministic differential sub-equation, while the statistical linearization method is utilized for obtaining an equivalent linear substitution for the stochastic sub-equation. A semi-analytical solution of the equivalent lin? ear equation is obtained by the Prony-SS and Laplace transform technique. The unknown deterministic/stochastic response compo? nents are obtained by solving the derived nonlinear algebraic equations simultaneously. Monte Carlo simulations demonstrate the applicability and accuracy of this method.

    参考文献
    相似文献
    引证文献
引用本文

孔 凡,廖海君,韩仁杰,张 义,洪 旭.联合激励下分数阶非线性系统非平稳响应的 半解析方法[J].振动工程学报,2024,37(8):1339~1348.[KONG Fan, LIAO Hai?jun, HAN Ren?jie, ZHANG Yi, HONG Xu. A semi‑analytical method for non‑stationary response determination of nonlinear systems subjected to combined excitation[J]. Journal of Vibration Engineering,2024,37(8):1339~1348.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司