结合传递比与栈式自编码器的结构损伤识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU312+.3;TU391

基金项目:

国家自然科学基金资助项目(52178276);福建省自然科学基金资助项目(2021J01601);福州市科技计划项目 (2021-Y-084)


Structural damage identification incorporating transmissibility functions with stacked auto-encoders
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    如何从土木结构响应数据中挖掘损伤特征并有效分类,是实现损伤模式识别的关键。为此,以框架结构为分 析对象,搭建设有自编码器隐藏层和 Softmax 分类层的栈式自编码器网络,采用无监督联合有监督的混合学习机 制;基于有限元分析获取框架不同工况下的传递比函数值,构建训练集、验证集和测试集样本;通过预训练确定自编 码器隐藏层的参数值如权重和偏置值,避免网络出现过拟合;采用微调方式进一步调整预训练后的网络参数值,再 结合验证集实现对网络超参数的调整;将实测传递比数据输入网络,实现对框架节点损伤的评估。结果表明:所提 方法能有效进行损伤特征的提取和分类,准确识别框架节点的单、双损伤工况,相较于传统浅层神经网络具有更高 的识别准确度和更好的抗噪性。

    Abstract:

    The key to damage pattern recognition lies in digging and classifying damage features from the response data of civil structures. To this end, a stack auto-encoder network with several auto-encoder hidden layers and a Softmax classification layer is built for analyzing frame structures. A hybrid learning mechanism is adopted to combining unsupervised and supervised learning strategies. Finite element analysis is used to generate the transmissibility function samples corresponding to different scenarios of a frame structure. The transmissibility samples are then divided into training, validation, and test sets. The parameters of the autoencoder hidden layers, such as the weights and bias, are determined by a pre-training strategy in order to avoid the phenomenon of network over fitting. A fine-tuning step is employed to adjust the pre-trained network parameters, and the network hyper parame? ters are further adjusted based on the validation set. The measured transmissibility data are input into the network to evaluate the damage of the frame structure. The analysis results show that the proposed method can effectively extract and classify the damage features. Both the single and double damage scenarios at the frame joints were identified with higher accuracy and better anti-noise ability than the traditional shallow neural network.

    参考文献
    相似文献
    引证文献
引用本文

方圣恩,刘 洋,张笑华.结合传递比与栈式自编码器的结构损伤识别[J].振动工程学报,2024,37(9):1460~1467.[FANG Sheng-en, LIU Yang, ZHANG Xiao-hua. Structural damage identification incorporating transmissibility functions with stacked auto-encoders[J]. Journal of Vibration Engineering,2024,37(9):1460~1467.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-17
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司