飞机异常动载荷快速定位的深度神经网络方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V214.5;O327

基金项目:

航空科学基金资助项目(20220015053002)


A deep neural network method for rapid localization of aircraft abnormal dynamic loads
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞机在服役中往往处于复杂多变的动载荷环境,动载荷定位是需首要解决的问题。本文针对飞机结构多种 常见且易引起异常振动的动载荷定位需求,结合深度神经网络,建立了一种面向飞机结构的异常动载荷快速定位方 法。采用长短期记忆(Long Short?Term Memory, LSTM)神经网络构建可以精确描述结构所受动载荷的作用位置 与振动响应间对应关系的逆向隐式函数模型,提出了基于 LSTM 神经网络分类模型的动载荷定位技术。建立了简 化的全机结构有限元模型,对飞机在实际飞行中可能遇到的几个典型动载荷工况进行了模拟,准确完成了对动载荷 的定位,并对所建立深度神经网络的抗噪性、鲁棒性进行了研究。仿真结果表明,所提方法对多种载荷工况下的动 载荷位置可以进行准确识别,且在 10 dB 的测量噪声水平和 2.8% 的参数摄动下仍能保持较高的定位准确率。

    Abstract:

    Aircraft often operate in complex and variable dynamic load environment, and dynamic load localization is the primary problem that needs to be solved in this field. This paper focuses on the dynamic load localization requirements of common and prone to abnormal vibrations in aircraft structures. Combining deep neural network, a rapid dynamic load localization method for aircraft structures is developed. By using Long Short-Term Memory (LSTM) neural network, the inverse implicit function model which can accurately describe the corresponding relationship between the dynamic load location and vibration response of the struc? ture is constructed. A dynamic load localization method based on the LSTM neural network classification model is proposed. A sim? plified finite element model of the entire aircraft structure is established to simulate several typical dynamic load conditions that the aircraft may encounter during actual flight. The noise resistance and robustness of the established deep neural network are also studied. The simulation results show that the proposed method can accurately identify the location of dynamic loads under various load condi? tions, and can still maintain high locating accuracy under the measurement noise level of 10 dB and the parameter perturbation of 2.8%.

    参考文献
    相似文献
    引证文献
引用本文

梁舒雅,徐昕炜,杨 特,王 乐,杨智春.飞机异常动载荷快速定位的深度神经网络方法[J].振动工程学报,2024,37(10):1651~1659.[LIANG Shu-ya, XU Xin-wei, YANG Te, WANG Le, YANG Zhi-chun. A deep neural network method for rapid localization of aircraft abnormal dynamic loads[J]. Journal of Vibration Engineering,2024,37(10):1651~1659.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-25
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司