结合深度信念记忆网络的结构损伤识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU312+.3;TU391

基金项目:

国家自然科学基金资助项目(52178276);福建省自然科学基金资助项目(2021J01601);福州市科技计划项目(2021-Y-084)


Structural damage identification via a deep belief memory network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从结构响应信号中挖掘敏感损伤特征是基于模式分类的损伤识别方法的关键。为此,将深度信念网络和长短期记忆网络进行混合组网,通过混合学习机制有机结合了两种网络在高阶抽象特征提取和考虑数据序列相关性上的优点。将响应信号传递比值输入深度信念网络,实现初步数据压缩和特征提取,以减少响应中的冗余信息;将特征序列依次输入长短期记忆网络,以考虑响应间的相关性并获取敏感损伤特征;利用 Softmax 分类层对长短期记忆网络输出的特征进行分类,实现对不同结构损伤模式的识别。三维试验钢框架的损伤识别结果表明:混合学习机制能更好地训练网络参数,整体微调后更有利于后续的损伤特征分类;混合组网方式在包含数值或实测噪声的情况下仍可以有效进行数据压缩、特征提取和分类,准确识别了试验框架的多种损伤工况。

    Abstract:

    Extracting sensitive damage features from structural response signals is crucial for damage identification methods based on pattern classification. To this end, a hybrid network that combines a deep belief networks (DBN) and a long-short term memory (LSTM) network is proposed through a hybrid learning mechanism to utilize the merits of both networks in the aspects of extracting high-order abstract features and considering data sequence correlations. First, transmissibility data from response signals are sequentially input into the DBN to achieve the initial data compression and feature extraction, reducing the redundant information in the responses. Then, the extracted feature sequences are input into the LSTM network to consider the correlation between the different responses for acquiring the relevant sensitive damage features. Finally, a classification layer with the Softmax function is used to classify the features output by the LSTM network. Thereby, different structural damage patterns can be identified. The damage identification results on a three-dimensional experimental steel frame demonstrate that the hybrid learning mechanism can better train the network parameters, and the fine-tuning on the whole hybrid network contributes to the subsequent damage feature classification. Under the pollution of numerical or measured noises, the hybrid network can still effectively perform the data compression, feature extraction and classification. The various damage scenarios of the experimental frame are well identified.

    参考文献
    相似文献
    引证文献
引用本文

方圣恩,刘 洋.结合深度信念记忆网络的结构损伤识别[J].振动工程学报,2024,37(11):1917~1924.[FANG Sheng-En, LIU Yang. Structural damage identification via a deep belief memory network[J]. Journal of Vibration Engineering,2024,37(11):1917~1924.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司