多尺度图池化特征融合的集成智能故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; TH133.33

基金项目:

国家自然科学基金资助项目(61973001,52075001);安徽省自然科学基金资助项目(2208085QF205);安徽省 高校自然科学研究重点项目(2022AH050097,KJ2021A0071)


Ensemble intelligent fault diagnosis method based on multi‑scale graph pooling feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图神经网络模型由于其丰富的故障表征能力,已在故障诊断领域得到广泛应用。然而现有模型在处理故障 数据时仅利用相邻节点间的局部信息,未能充分提取全局特征信息,为了克服单一模型故障诊断精度不高和泛化能 力不足的问题,提出一种基于多尺度图池化特征融合与图卷积网络(MSGP?GCN)的集成故障诊断方法。通过对原 始信号构建图模型,使用图池化粗化得到全局信息。根据节点的度在不同尺度下分配权重,进而利用全局信息结合 权重更新节点特征。将更新后的节点特征分别输入不同的分类器中,对分类结果使用多数投票策略实现智能故障 诊断。在SEU仿真数据集和真实的磨煤机数据集上对所提出的方法进行验证,结果表明所提模型能够明显提高故 障诊断的精度和泛化能力,平均诊断精度分别达到98.31%和97.21%

    Abstract:

    The graph neural network models have been widely used in the field of fault diagnosis due to the advantage of abundant fault characterization capabilities. However, the existing models only utilize the local information among neighboring nodes when dealing with fault data, and fail to fully extract the global feature information. Meanwhile, in order to overcome the problems of low accuracy and insufficient generalization ability of single model. This paper proposes an ensemble method with multi-scale graph pooling feature fusion and graph convolutional network (MSGP-GCN). The graph model is constructed from the original signal, and global information is obtained using graph pooling coarsening. Then weights are assigned at different scales based on the degree of the nodes, and the global information is used to update the node features in combination with the weights. The updated node fea? tures are input into different classifiers respectively, and the intelligent fault diagnosis result is obtained by majority voting strategy among these classification results. The proposed approach is fully verified by two fault datasets, the SEU simulation dataset and the real coal mill dataset. The experimental results show that the proposed model can effectively improve fault diagnostic accuracy and generalization ability in aforesaid two real datasets, and the average diagnostic accuracy reaches 98.31% and 97.21%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

张亚军,潘东辉,张先杰,张海峰,钟 凯,刘永斌.多尺度图池化特征融合的集成智能故障诊断方法[J].振动工程学报,2024,37(12):2148~2157.[ZHANG Ya-jun, PAN Dong-hui, ZHANG Xian-jie, ZHANG Hai-feng, ZHONG Kai, LIU Yong-bin. Ensemble intelligent fault diagnosis method based on multi‑scale graph pooling feature fusion[J]. Journal of Vibration Engineering,2024,37(12):2148~2157.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司