采用马尔科夫转移场和图注意力网络的滚动轴承故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; TH133.33

基金项目:

国家自然科学基金资助项目(51465035);甘肃省自然科学基金资助项目(20JR5RA466)


Rolling bearing fault diagnosis method based on Markov transition field and graph attention network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际工程环境复杂多变而导致模型识别准确率不高的问题,提出了一种融合马尔科夫转移场和图注意 力网络(Markov transition field and graph attention networks,MTF?GAT)的滚动轴承故障诊断模型。利用MTF保 留信号时间相关性的优点,将一维信号转换为二维特征图并定义图的节点和边;利用图注意力层可自适应地对邻近 节点分配不同权重的特点,提高模型捕获有用故障特征的能力,并采用深层卷积模块进一步提取图的抽象信息;通 过模拟实际工程环境,将各类故障信号输入到训练好的MTF?GAT模型进行故障诊断,并在两个数据集上进行试 验验证。结果表明,本文所提出的模型在多种环境下均能准确地完成故障分类任务,相较于其他常用的深度学习模 型,MTF?GAT模型具有更好的识别精度和泛化性能。

    Abstract:

    Aiming at the problem that the recognition accuracy of the model is not high due to the complex and variable engineering environment, a rolling bearing fault diagnosis model integrating Markov transition field and graph attention networks (MTF GAT) is proposed in this paper. Using the advantage of MTF to retain the time correlation of the signal is applied to transform one dimensional signals into two-dimensional feature maps, and the nodes and edges of the graph are defined. The graph attention layer can adaptively assign different weights to adjacent nodes to improve the ability of the model to capture useful fault features, and the abstract information of the graph is further extracted through the deep convolution module. By simulating the actual engineering en? vironment, the various fault signals are input into the trained MTF-GAT model for fault diagnosis, and the model is verified by ex? periments on two data sets. The results show that the proposed model in this paper can accurately complete the task of fault classifi? cation in a variety of environments. Compared with other deep learning models, the MTF-GAT model has better recognition accu? racy and generalization performance.

    参考文献
    相似文献
    引证文献
引用本文

雷春丽,薛林林,夏奔锋,焦孟萱,史佳硕.采用马尔科夫转移场和图注意力网络的滚动轴承故障诊断方法[J].振动工程学报,2024,37(12):2148~2157.[LEI Chun?li, XUE Lin?lin, XIA Ben?feng, JIAO Meng?xuan, SHI Jia?shuo. Rolling bearing fault diagnosis method based on Markov transition field and graph attention network[J]. Journal of Vibration Engineering,2024,37(12):2148~2157.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司