小样本下SE-Resnet与元迁移学习的变工况轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

兰州交通大学

作者简介:

通讯作者:

中图分类号:

TH113.1

基金项目:

甘肃省自然科学基金重点项目(20JR10RA209);甘肃省科技厅优秀博士生项目(23JRRA890,25JRRA215)。


Bearing fault diagnosis by SE-Resnet and meta-transfer learning under few-shot and variable working conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轴承在变工况下样本分布不同、故障样本少和一些小样本算法特征提取有限导致轴承故障诊断精度低及模型泛化能力弱的问题,提出了小样本下嵌入压缩、激励的残差网络(SE-Resnet)与元迁移学习(MTL)的变工况轴承故障诊断方法。首先,将采集的不同工况下轴承一维振动信号通过连续小波变换(CWT)转换成对应工况下的时频图像,从而将轴承故障诊断问题转换为图像识别问题;其次,引入压缩-激励注意力机制构建了一种SE-Resnet的骨干网络模型,以聚焦于更有效的特征通道,增强特征提取表征能力;然后,借助迁移学习能提供良好的深层网络初始参数和元学习能快速学习的优势,依次进行预训练与元迁移训练,得到利用少量样本微调便能达到高精度的元迁移网络,进而实现变工况下的轴承故障诊断;最后,通过两个基准数据集和本实验室搭建的轴承故障模拟试验台进行了验证,并与其他方法进行对比分析,结果表明所提方法在小样本、变工况下对轴承故障诊断具有更高的识别精度和泛化性能。

    Abstract:

    Aiming at the problems of low accuracy of bearing fault diagnosis due to different sample distribution and few fault samples under varying working conditions, and limited feature extraction and weak generalization ability of some small sample algorithms, a bearing fault diagnosis method by squeeze-excitation-resnet (SE-Resnet) and meta-transfer learning (MTL) under few-shot and variable working conditions is proposed. Firstly, the one-dimensional bearing vibration signal under different working conditions is converted into time-frequency image by continuous wavelet transform (CWT), thus transforming the bearing fault diagnosis into image recognition. Secondly, the squeeze-excitation attention mechanism is introduced to build a backbone network model of SE-Resnet to focus on more effective feature channels and enhance feature extraction capabilities. Then, taking advantage of the advantages of transfer learning that can provide good initial parameters of the deep network and rapid learning of meta-learning, pre-training and meta-transfer training are carried out in turn to obtain a high-precision meta-transfer network that can be achieved by fine-tuning with a small number of samples, thereby realizing bearing fault diagnosis under variable working conditions. Finally, the proposed method is verified by two benchmark datasets and a bearing fault simulation test bench built in our laboratory, and compared with other methods. The results show that the proposed method has higher recognition accuracy and generalization performance for bearing fault diagnosis under few-shot and variable working conditions.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-03-03
  • 录用日期:2025-03-31
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司