箱型图与特征融合模型在轮对轴承标签混淆数据分类中的应
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; TH133.3

基金项目:

国家自然科学基金资助项目(52105098);河北省自然科学基金资助项目(E2021502038)


The application of box graph and feature fusion model in the classification of wheel set bearing label confusion data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习方法在列车轮对轴承故障诊断领域表现出了巨大的潜力,但其可以有效实现的前提是各类数据与类别标签之 间能够正确匹配,对于含有少量标签错误样本的数据,传统深度学习方法难以实现预期的诊断效果。针对此问题,提出了一种 箱型图法与特征融合模型相结合的故障诊断方法。利用列车轮对轴承实验数据对所提方法进行验证,结果表明,相比于直接 利用传统神经网络模型进行故障诊断,本文所提方法的诊断准确率更高,说明本文方法对于含有少量标签错误样本的轴承数 据具有更好的处理效果。

    Abstract:

    Deep learning methods have shown great potential in the field of fault diagnosis of train wheelset bearings, but their effec? tive implementation is based on the correct matching between various types of data and category labels. For data with a small num? ber of label error samples, traditional deep learning methods are difficult to achieve the expected diagnostic effect. To address this issue, this paper proposes a fault diagnosis method combining box graph method and feature fusion model is proposed to address this issue. In this method, the outlier in each group of bearing signals is removed by box graph method, and the remaining data is expanded by the SMOTE method to restore to the original data size; Input the processed sample data into the improved feature fu? sion model for fault identification and classification. The experimental data of train wheel bearings was used for validation. The re? sults showed that compared to directly using traditional neural network models for fault diagnosis, the diagnostic accuracy of the method proposed in this paper is higher, indicating that the method has better processing performance for bearing data with a small number of label error samples.

    参考文献
    相似文献
    引证文献
引用本文

张 雄,李嘉禄,董 帆,武文博,万书亭,顾晓辉.箱型图与特征融合模型在轮对轴承标签混淆数据分类中的应[J].振动工程学报,2025,38(1):088~095.[ZHANG Xiong, LI Jialu, DONG Fan, WU Wenbo, WAN Shuting, GU Xiaohui. The application of box graph and feature fusion model in the classification of wheel set bearing label confusion data[J]. Journal of Vibration Engineering,2025,38(1):088~095.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-09
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司