基于非参数贝叶斯方法的结构损伤识别研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U443.38; TU446

基金项目:

国家自然科学基金资助项目(51708545); 中国博士后科学基金面上项目(2019M652006)


Structural damage identification enabled by the non‑parametric Bayesian method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    聚类分析是数据处理中常用的无监督方法,而聚类分析参数较难精准确定,限制了该方法在结构损伤识别中的应用。为 解决该问题,本文提出了一种非参数贝叶斯聚类方法,结合结构模态参数开展结构损伤识别和定量分析,拓展了非参数贝叶斯 模型的应用范围。所提方法采用自然激励技术处理结构实测振动数据以得到固有频率,通过非参数贝叶斯聚类方法对数据进 行聚类,最终结合极大似然异方差高斯过程和贝叶斯因子对聚类结果进行损伤定量分析。通过天津永和桥实际工程案例对所 提损伤识别方法的结果进行验证,结果表明,该方法能够在不提前设置聚类参数的情况下,对结构自振频率数据进行精准聚类 分析,进一步对结构不同损伤状态进行识别。

    Abstract:

    Clustering analysis is a commonly used unsupervised method in data processing. However, the difficulty in accurately de termining clustering parameters limits the application of this method in structural damage identification. To address this issue, a non-parametric Bayesian clustering method is proposed in this study, which combines structural modal parameters for structural damage identification and quantitative analysis, thereby expanding the application range of the non-parametric Bayesian model. First, the natural excitation method is used to extract the natural frequency from the measured vibration data of the structure. Then, the non-parametric Bayesian clustering method is employed to cluster the data. Finally, maximum likelihood heteroscedastic Gaussian process regression and Bayesian factors are combined to quantitatively analyze the clustering results for damage quantita tion analysis. The results of the damage identification method are verified by the actual engineering case of Yonghe Bridge in Tian jin. The results show that this method can accurately cluster the natural frequency data and identify the different damage states of the structure without the need to pre-set clustering parameters.

    参考文献
    相似文献
    引证文献
引用本文

王其昂,王浩博,周明利,孙发源,倪一清,吴子燕,丁安驰,李健朋,李文磊.基于非参数贝叶斯方法的结构损伤识别研究[J].振动工程学报,2025,38(2):260~267.[WANG Qi’ang, WANG Haobo, ZHOU Mingli, SUN Fayuan, NI Yiqing, WU Ziyan, DING Anchi, LI Jianpeng, LI Wenlei. Structural damage identification enabled by the non‑parametric Bayesian method[J]. Journal of Vibration Engineering,2025,38(2):260~267.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-11
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司