基于多特征空间自适应网络的谐波减速器故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; TH132.46

基金项目:

国家自然科学基金资助项目(52475548); 国家重点研发计划资助项目(2023YFB3406200);重庆市教委科学技 术研究项目(KJZD?M202200701); 重庆市自然科学基金创新发展联合基金资助项目(CSTB2023NSCQ LZX0127);重庆市研究生联合培养基地项目(JDLHPYJD2024006)


Fault diagnosis of harmonic reducer based on multiple feature spaces adaptive network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于多测点位置不同引起的数据分布差异造成谐波减速器故障诊断效果不佳,提出基于多特征空间自适应网络(multi ple feature spaces adaptation network,MFSAN)的谐波减速器故障诊断方法。对谐波减速器振动信号进行连续小波变换,以构 造时频图来描述其运行状态特征。将不同位置传感器所测数据划分为多个源域数据和目标域数据映射到不同特征空间,得到 不同测点位置下的特征表示。利用自适应网络将源域中学习到的知识自动应用到目标域,以自动对齐特定领域的特征分布, 从而学习多个域不变表示。利用领域特定的决策边界来对齐分类器的输出,从而有效减少因传感器位置差异引起的数据分布 差异。在工业机器人谐波减速器诊断实验中,所提诊断方法达到了99.72%的准确率,高于其他对比方法,验证了所提诊断方 法的有效性和可行性。

    Abstract:

    Due to the differences in data distribution caused by different locations of multiple measuring points, the fault diagnosis of the harmonic reducer is often ineffective. A fault diagnosis method for the harmonic reducer, based on a multiple feature spaces adaptation network (MFSAN), is proposed. Firstly, the vibration signal of the harmonic reducer is transformed using continuous wavelet transform to construct a time-frequency diagram that characterizes its operational state. Secondly, the data measured by sensors at different positions are divided into multiple source domain and target domain data, which are mapped to different feature spaces to obtain feature representations for each measuring point position. Then, the adaptive network is used to automatically transfer the knowledge learned from the source domain to the target domain features and automatically align the feature distribution of a specific domain to learn multiple domain-invariant representations. Finally, a domain-specific decision boundary is used to align the output of the classifier, effectively solving the data distribution differences caused by sensor location. Experimental results of harmonic reducer diagnosis of an industrial robot show that the identification accuracy of this method is 99.72%, which is higher than that of other comparison methods. The effectiveness and feasibility of this method are thus verified.

    参考文献
    相似文献
    引证文献
引用本文

陈仁祥,张 晓,李嘉琳,杨宝军,张 旭.基于多特征空间自适应网络的谐波减速器故障诊断[J].振动工程学报,2025,38(2):432~440.[CHEN Renxiang, ZHANG Xiao, LI Jialin, YANG Baojun, ZHANG Xu. Fault diagnosis of harmonic reducer based on multiple feature spaces adaptive network[J]. Journal of Vibration Engineering,2025,38(2):432~440.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-11
  • 出版日期:
文章二维码
您是第位访问者
振动工程学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司